Suppr超能文献

用于软液压机器人的全软3D打印电活性流体阀。

Fully Soft 3D-Printed Electroactive Fluidic Valve for Soft Hydraulic Robots.

作者信息

Zatopa Alex, Walker Steph, Menguc Yigit

机构信息

1 Department of Mechanical, Industrial and Manufacturing Engineering (Robotics), Oregon State University , Corvallis, Oregon.

2 Department of Materials Science and Robotics, Oregon State University , Corvallis, Oregon.

出版信息

Soft Robot. 2018 Jun;5(3):258-271. doi: 10.1089/soro.2017.0019. Epub 2018 Apr 2.

Abstract

Soft robots are designed to utilize their compliance and contortionistic abilities to both interact safely with their environment and move through it in ways a rigid robot cannot. To more completely achieve this, the robot should be made of as many soft components as possible. Here we present a completely soft hydraulic control valve consisting of a 3D-printed photopolymer body with electrorheological (ER) fluid as a working fluid and gallium-indium-tin liquid metal alloy as electrodes. This soft 3D-printed ER valve weighs less than 10 g and allows for onboard actuation control, furthering the goal of an entirely soft controllable robot. The soft ER valve pressure-holding capabilities were tested under unstrained conditions, cyclic valve activation, and the strained conditions of bending, twisting, stretching, and indentation. It was found that the max holding pressure of the valve when 5 kV was applied across the electrodes was 264 kPa, and that the holding pressure deviated less than 15% from the unstrained max holding pressure under all strain conditions except for indentation, which had a 60% max pressure increase. In addition, a soft octopus-like robot was designed, 3D printed, and assembled, and a soft ER valve was used to stop the fluid flow, build pressure in the robot, and actuate six tentacle-like soft bending actuators.

摘要

软体机器人的设计目的是利用其柔顺性和可扭曲能力,既能与环境安全互动,又能以刚性机器人无法做到的方式在环境中移动。为了更全面地实现这一目标,机器人应尽可能由更多的软体部件制成。在此,我们展示了一种完全软体的液压控制阀,它由3D打印的光聚合物主体、作为工作流体的电流变(ER)液以及作为电极的镓铟锡液态金属合金组成。这种软体3D打印的ER阀重量不到10克,并允许进行车载驱动控制,进一步推动了完全软体可控机器人这一目标的实现。在无应变条件、循环阀激活以及弯曲、扭转、拉伸和压痕等应变条件下测试了软体ER阀的保压能力。结果发现,当在电极两端施加5 kV电压时,该阀的最大保压压力为264 kPa,并且在除压痕外的所有应变条件下,保压压力与无应变时的最大保压压力偏差小于15%,压痕情况下最大压力增加了60%。此外,还设计、3D打印并组装了一个类似章鱼的软体机器人,并使用一个软体ER阀来停止流体流动、在机器人中建立压力以及驱动六个类似触手的软体弯曲致动器。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验