Wellesley College, Neuroscience Program, 106 Central Street, Wellesley, MA, 02481, USA.
Humboldt-Universität zu Berlin, Institut für Biologie, Vergleichende Zoologie, Philippstraße 13, Haus 2, 10115, Berlin, Germany.
BMC Evol Biol. 2018 Apr 5;18(1):47. doi: 10.1186/s12862-018-1150-0.
Comparative studies of neuroanatomy and neurodevelopment provide valuable information for phylogenetic inference. Beyond that, they reveal transformations of neuroanatomical structures during animal evolution and modifications in the developmental processes that have shaped these structures. In the extremely diverse Arthropoda, such comparative studies contribute with ever-increasing structural resolution and taxon coverage to our understanding of nervous system evolution. However, at the neurodevelopmental level, in-depth data remain still largely confined to comparably few laboratory model organisms. Therefore, we studied postembryonic neurogenesis in six species of the bizarre Pycnogonida (sea spiders), which - as the likely sister group of all remaining chelicerates - promise to illuminate neurodevelopmental changes in the chelicerate lineage.
We performed in vivo cell proliferation experiments with the thymidine analogs 5-bromo-2'-deoxyuridine and 5-ethynl-2'-deoxyuridine coupled to fluorescent histochemical staining and immunolabeling, in order to compare ventral nerve cord anatomy and to localize and characterize centers of postembryonic neurogenesis. We report interspecific differences in the architecture of the subesophageal ganglion (SEG) and show the presence of segmental "ventral organs" (VOs) that act as centers of neural cell production during gangliogenesis. These VOs are either incorporated into the ganglionic soma cortex or found on the external ganglion surface. Despite this difference, several shared features support homology of the two VO types, including (1) a specific arrangement of the cells around a small central cavity, (2) the presence of asymmetrically dividing neural stem cell-like precursors, (3) the migration of newborn cells along corresponding pathways into the cortex, and (4) the same VO origin and formation earlier in development.
Evaluation of our findings relative to current hypotheses on pycnogonid phylogeny resolves a bipartite SEG and internal VOs as plesiomorphic conditions in pycnogonids. Although chelicerate taxa other than Pycnogonida lack comparable VOs, they are a characteristic feature of myriapod gangliogenesis. Accordingly, we propose internal VOs with neurogenic function to be part of the ground pattern of Arthropoda. Further, our findings illustrate the importance of dense sampling in old arthropod lineages - even if as gross-anatomically uniform as Pycnogonida - in order to reliably differentiate plesiomorphic from apomorphic neurodevelopmental characteristics prior to outgroup comparison.
神经解剖学和神经发育的比较研究为系统发育推断提供了有价值的信息。除此之外,它们还揭示了动物进化过程中神经解剖结构的变化,以及塑造这些结构的发育过程的变化。在极其多样化的节肢动物门中,这种比较研究以不断增加的结构分辨率和分类群覆盖率,为我们理解神经系统进化做出了贡献。然而,在神经发育水平上,深入的数据仍然主要局限于少数几个实验室模式生物。因此,我们研究了六个 Pycnogonida(海蜘蛛)物种的胚胎后神经发生,作为所有其他螯肢动物的可能姐妹群,这些物种有望阐明螯肢动物谱系中的神经发育变化。
我们通过将胸腺嘧啶类似物 5-溴-2'-脱氧尿苷和 5-乙炔基-2'-脱氧尿苷与荧光组织化学染色和免疫标记结合使用,进行了活体细胞增殖实验,以比较腹神经索解剖结构,并定位和表征胚胎后神经发生中心。我们报告了种间亚食管神经节(SEG)结构的差异,并显示了存在作为神经细胞产生中心的节段性“腹器官”(VO)。这些 VOs 要么被纳入神经节体皮质,要么位于神经节外表面。尽管存在这种差异,但几个共同特征支持两种 VO 类型的同源性,包括:(1)细胞围绕一个小中央腔的特定排列;(2)存在不对称分裂的神经干细胞样前体;(3)新生细胞沿着相应的途径迁移到皮质;(4)相同的 VO 起源和在发育早期形成。
将我们的发现与关于 Pycnogonida 系统发育的现有假说进行评估,解决了 SEG 的二分法和内部 VOs 作为 Pycnogonida 中的原始条件。尽管除了 Pycnogonida 之外的螯肢动物类群没有类似的 VOs,但它们是多足类神经发生的特征。因此,我们提出具有神经发生功能的内部 VOs 是节肢动物的基础模式的一部分。此外,我们的研究结果表明,即使像 Pycnogonida 那样在大体解剖上均匀的古老节肢动物谱系中,密集采样对于在与外群比较之前可靠地区分原始和衍生的神经发育特征也很重要。