虹鳟(Oncorhynchus mykiss)红细胞短路后细胞内pH恢复的时间进程与静脉转运时间的关系
Time course of red blood cell intracellular pH recovery following short-circuiting in relation to venous transit times in rainbow trout, Oncorhynchus mykiss.
作者信息
Harter Till S, May Alexandra G, Federspiel William J, Supuran Claudiu T, Brauner Colin J
机构信息
Department of Zoology, University of British Columbia , Vancouver, BC , Canada.
McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania.
出版信息
Am J Physiol Regul Integr Comp Physiol. 2018 Aug 1;315(2):R397-R407. doi: 10.1152/ajpregu.00062.2018. Epub 2018 Apr 11.
Accumulating evidence is highlighting the importance of a system of enhanced hemoglobin-oxygen (Hb-O) unloading for cardiovascular O transport in teleosts. Adrenergically stimulated sodium-proton exchangers (β-NHE) create H gradients across the red blood cell (RBC) membrane that are short-circuited in the presence of plasma-accessible carbonic anhydrase (paCA) at the tissues; the result is a large arterial-venous pH shift that greatly enhances O unloading from pH-sensitive Hb. However, RBC intracellular pH (pH) must recover during venous transit (31-90 s) to enable O loading at the gills. The halftimes ( t) and magnitudes of RBC β-adrenergic stimulation, short-circuiting with paCA and recovery of RBC pH, were assessed in vitro, on rainbow trout whole blood, and using changes in closed-system partial pressure of O as a sensitive indicator for changes in RBC pH. In addition, the recovery rate of RBC pH was assessed in a continuous-flow apparatus that more closely mimics RBC transit through the circulation. Results indicate that: 1) the t of β-NHE short-circuiting is likely within the residence time of blood in the capillaries, 2) the t of RBC pH recovery is 17 s and within the time of RBC venous transit, and 3) after short-circuiting, RBCs reestablish the initial H gradient across the membrane and can potentially undergo repeated cycles of short-circuiting and recovery. Thus, teleosts have evolved a system that greatly enhances O unloading from pH-sensitive Hb at the tissues, while protecting O loading at the gills; the resulting increase in O transport per unit of blood flow may enable the tremendous athletic ability of salmonids.
越来越多的证据表明,在硬骨鱼中,增强血红蛋白-氧气(Hb-O)卸载系统对于心血管氧气运输至关重要。肾上腺素刺激的钠-质子交换体(β-NHE)在红细胞(RBC)膜上形成氢离子梯度,在组织中存在血浆可及碳酸酐酶(paCA)的情况下,该梯度会被短路;结果是动脉-静脉pH值大幅变化,极大地增强了对pH敏感的血红蛋白的氧气卸载。然而,红细胞内pH值(pH)必须在静脉运输过程中(31-90秒)恢复,以便在鳃部进行氧气加载。在体外,以虹鳟全血为样本,利用封闭系统中氧气分压的变化作为红细胞pH值变化的敏感指标,评估了红细胞β-肾上腺素能刺激的半衰期(t)、与paCA的短路情况以及红细胞pH值的恢复情况。此外,在更接近模拟红细胞在循环中运输的连续流动装置中评估了红细胞pH值的恢复率。结果表明:1)β-NHE短路的t可能在血液在毛细血管中的停留时间内;2)红细胞pH值恢复的t为17秒,在红细胞静脉运输时间内;3)短路后,红细胞重新建立跨膜的初始氢离子梯度,并可能经历反复的短路和恢复循环。因此,硬骨鱼进化出了一种系统,该系统在组织中极大地增强了对pH敏感的血红蛋白的氧气卸载,同时保护了鳃部的氧气加载;单位血流量中氧气运输的增加可能使鲑科鱼类具有巨大的运动能力。