CNRS, UMR 8523, Laboratoire de Physique des Lasers Atomes et Molécules, Université de Lille, 59000, Lille, France.
Laboratoire de Physique Théorique, IRSAMC, Université de Toulouse, CNRS, 31062, Toulouse, France.
Nat Commun. 2018 Apr 11;9(1):1382. doi: 10.1038/s41467-018-03481-9.
Anderson localization, the absence of diffusion in disordered media, draws its origins from the destructive interference between multiple scattering paths. The localization properties of disordered systems are expected to be dramatically sensitive to their symmetries. So far, this question has been little explored experimentally. Here we investigate the realization of an artificial gauge field in a synthetic (temporal) dimension of a disordered, periodically driven quantum system. Tuning the strength of this gauge field allows us to control the parity-time symmetry properties of the system, which we probe through the experimental observation of three symmetry-sensitive signatures of localization. The first two are the coherent backscattering, marker of weak localization, and the recently predicted coherent forward scattering, genuine interferential signature of Anderson localization. The third is the direct measurement of the β(g) scaling function in two different symmetry classes, allowing to demonstrate its universality and the one-parameter scaling hypothesis.
安德森局域化,即无序介质中不存在扩散现象,其起源于多次散射路径之间的相消干涉。无序系统的局域化性质预计会对其对称性非常敏感。到目前为止,这个问题在实验上还很少被探索。在这里,我们研究了在一个无序的、周期性驱动的量子系统的合成(时间)维度中实现一个人工规范场。调节这个规范场的强度可以让我们控制系统的宇称-时间对称性,我们通过实验观察三个局域化的对称性敏感特征来探测这些性质。前两个特征是相干背散射,这是弱局域化的标志,以及最近预测的相干前向散射,这是安德森局域化的真正干涉特征。第三个特征是在两个不同的对称性类中直接测量β(g)标度函数,这可以证明它的普遍性和单参数标度假设。