Suppr超能文献

从动态场景中学习物理参数。

Learning physical parameters from dynamic scenes.

作者信息

Ullman Tomer D, Stuhlmüller Andreas, Goodman Noah D, Tenenbaum Joshua B

机构信息

Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, USA.

Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, USA.

出版信息

Cogn Psychol. 2018 Aug;104:57-82. doi: 10.1016/j.cogpsych.2017.05.006. Epub 2018 Apr 11.

Abstract

Humans acquire their most basic physical concepts early in development, and continue to enrich and expand their intuitive physics throughout life as they are exposed to more and varied dynamical environments. We introduce a hierarchical Bayesian framework to explain how people can learn physical parameters at multiple levels. In contrast to previous Bayesian models of theory acquisition (Tenenbaum, Kemp, Griffiths, & Goodman, 2011), we work with more expressive probabilistic program representations suitable for learning the forces and properties that govern how objects interact in dynamic scenes unfolding over time. We compare our model to human learners on a challenging task of estimating multiple physical parameters in novel microworlds given short movies. This task requires people to reason simultaneously about multiple interacting physical laws and properties. People are generally able to learn in this setting and are consistent in their judgments. Yet they also make systematic errors indicative of the approximations people might make in solving this computationally demanding problem with limited computational resources. We propose two approximations that complement the top-down Bayesian approach. One approximation model relies on a more bottom-up feature-based inference scheme. The second approximation combines the strengths of the bottom-up and top-down approaches, by taking the feature-based inference as its point of departure for a search in physical-parameter space.

摘要

人类在发育早期就获得了最基本的物理概念,并在一生中不断丰富和扩展他们的直观物理学知识,因为他们接触到更多样化的动态环境。我们引入了一个分层贝叶斯框架来解释人们如何在多个层面学习物理参数。与之前的理论习得贝叶斯模型(Tenenbaum、Kemp、Griffiths和Goodman,2011)不同,我们使用更具表现力的概率程序表示法,适合于学习在随时间展开的动态场景中物体如何相互作用的力和属性。我们在一项具有挑战性的任务中将我们的模型与人类学习者进行比较,该任务是根据短视频估计新颖微观世界中的多个物理参数。这项任务要求人们同时对多个相互作用的物理定律和属性进行推理。人们通常能够在这种情况下学习,并且判断一致。然而,他们也会犯系统性错误,这表明人们在使用有限的计算资源解决这个计算要求高的问题时可能会做出的近似处理。我们提出了两种近似方法来补充自上而下的贝叶斯方法。一种近似模型依赖于一种更自下而上的基于特征的推理方案。第二种近似方法结合了自下而上和自上而下方法的优点,以基于特征的推理为出发点,在物理参数空间中进行搜索。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验