Suppr超能文献

[引产术后剖宫产:危险因素及预测评分]

[Cesarean after labor induction: Risk factors and prediction score].

作者信息

Branger B, Dochez V, Gervier S, Winer N

机构信息

Épidémiologie, 11, bis rue Gabriel-Luneau, 44000 Nantes, France.

Service de gynécologie-obstétrique, CHU, 38, boulevard Jean-Monnet, 44093 Nantes, France.

出版信息

Gynecol Obstet Fertil Senol. 2018 May;46(5):458-465. doi: 10.1016/j.gofs.2018.03.008. Epub 2018 Apr 12.

Abstract

OBJECTIVES

The objective of the study is to determine the risk factors for caesarean section at the time of labor induction, to establish a prediction algorithm, to evaluate its relevance and to compare the results with observation.

METHODS

A retrospective study was carried out over a year at Nantes University Hospital with 941 cervical ripening and labor inductions (24.1%) terminated by 167 caesarean sections (17.8%). Within the cohort, a case-control study was conducted with 147 caesarean sections and 148 vaginal deliveries. A multivariate analysis was carried out with a logistic regression allowing the elaboration of an equation of prediction and an ROC curve and the confrontation between the prediction and the reality.

RESULTS

In univariate analysis, six variables were significant: nulliparity, small size of the mother, history of scarried uterus, use of prostaglandins as a mode of induction, unfavorable Bishop score<6, variety of posterior release. In multivariate analysis, five variables were significant: nulliparity, maternal size, maternal BMI, scar uterus and Bishop score. The most predictive model corresponded to an area under the curve of 0.86 (0.82-0.90) with a correct prediction percentage ("well classified") of 67.6% for a caesarean section risk of 80%.

CONCLUSION

The prediction criteria would make it possible to inform the woman and the couple about the potential risk of Caesarean section in urgency or to favor a planned Caesarean section or a low-lying attempt on more objective, repeatable and transposable arguments in a medical team.

摘要

目的

本研究的目的是确定引产时剖宫产的危险因素,建立预测算法,评估其相关性,并将结果与观察结果进行比较。

方法

在南特大学医院进行了为期一年的回顾性研究,941例宫颈成熟和引产(占24.1%)中有167例以剖宫产结束(占17.8%)。在该队列中,进行了一项病例对照研究,包括147例剖宫产和148例阴道分娩。采用逻辑回归进行多变量分析,从而得出预测方程和ROC曲线,并将预测结果与实际情况进行对比。

结果

单变量分析中,六个变量具有显著性:初产、母亲身材矮小、有子宫瘢痕史、使用前列腺素作为引产方式、Bishop评分<6、后位释放类型。多变量分析中,五个变量具有显著性:初产、母亲身材、母亲BMI、瘢痕子宫和Bishop评分。最具预测性的模型对应的曲线下面积为0.86(0.82 - 0.90),对于剖宫产风险为80%的情况,正确预测百分比(“分类良好”)为67.6%。

结论

这些预测标准能够让产妇及其伴侣了解紧急剖宫产的潜在风险,或者基于医疗团队中更客观、可重复和可推广的依据,支持计划剖宫产或低位分娩尝试。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验