Suppr超能文献

在独立的镍丝薄膜上原位包覆镍有机配合物用于高体积能量密度超级电容器。

In situ coating nickel organic complexes on free-standing nickel wire films for volumetric-energy-dense supercapacitors.

作者信息

Hong Min, Xu Shusheng, Yao Lu, Zhou Chao, Hu Nantao, Yang Zhi, Hu Jing, Zhang Liying, Zhou Zhihua, Wei Hao, Zhang Yafei

机构信息

Key Laboratory for Thin Film and Microfabrication Technology of the Ministry of Education, School of Electronics Information and Electrical Engineering, Shanghai Jiao Tong University, Dong Chuan Road No.800, Shanghai, 200240, People's Republic of China.

出版信息

Nanotechnology. 2018 Jul 6;29(27):275401. doi: 10.1088/1361-6528/aabeb7. Epub 2018 Apr 17.

Abstract

A self-free-standing core-sheath structured hybrid membrane electrodes based on nickel and nickel based metal-organic complexes (Ni@Ni-OC) was designed and constructed for high volumetric supercapacitors. The self-standing Ni@Ni-OC film electrode had a high volumetric specific capacity of 1225.5 C cm at 0.3 A cm and an excellent rate capability. Moreover, when countered with graphene-carbon nanotube (G-CNT) film electrode, the as-assembled Ni@Ni-OC//G-CNT hybrid supercapacitor device delivered an extraordinary volumetric capacitance of 85 F cm at 0.5 A cm and an outstanding energy density of 33.8 at 483 mW cm. Furthermore, the hybrid supercapacitor showed no capacitance loss after 10 000 cycles at 2 A cm, indicating its excellent cycle stability. These fascinating performances can be ascribed to its unique core-sheath structure that high capacity nano-porous nickel based metal-organic complexes (Ni-OC) in situ coated on highly conductive Ni wires. The impressive results presented here may pave the way to construct s self-standing membrane electrode for applications in high volumetric-performance energy storage.

摘要

基于镍和镍基金属有机配合物(Ni@Ni-OC)设计并构建了一种用于高体积超级电容器的自支撑核壳结构混合膜电极。自支撑的Ni@Ni-OC薄膜电极在0.3 A/cm时具有1225.5 C/cm³的高体积比容量和出色的倍率性能。此外,当与石墨烯-碳纳米管(G-CNT)薄膜电极配对时,组装好的Ni@Ni-OC//G-CNT混合超级电容器装置在0.5 A/cm时具有85 F/cm³的非凡体积电容,在483 mW/cm³时具有33.8 Wh/L的出色能量密度。此外,该混合超级电容器在2 A/cm下循环10000次后没有电容损失,表明其具有出色的循环稳定性。这些引人注目的性能可归因于其独特的核壳结构,即高容量的纳米多孔镍基金属有机配合物(Ni-OC)原位包覆在高导电性镍丝上。这里展示的令人印象深刻的结果可能为构建用于高体积性能储能应用的自支撑膜电极铺平道路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验