Taliaferro Chelsea M, Danilov Evgeny O, Castellano Felix N
Department of Chemistry , North Carolina State University , Raleigh , North Carolina 27695-8204 , United States.
J Phys Chem A. 2018 May 10;122(18):4430-4436. doi: 10.1021/acs.jpca.8b02266. Epub 2018 Apr 26.
For decades, transition metal hydrides have been at the forefront of numerous photocatalytic reactions leveraging either photoacid or photohydride generation. Of upmost importance is the nature of the M-H bond itself, which is typically the major site of photochemical reactivity, particularly in Ir(III) hydrides featuring metal-to-ligand charge transfer (MLCT) excited states. As a departure point for understanding the fundamental spectroscopy and photophysics of the MLCT excited states of Ir(III) diimine hydrides, cis-[Ir(bpy)H] (bpy = 2,2'-bipyridine) and its deuterated analogue cis-[Ir(bpy)D] were prepared and investigated. The robust nature of these molecules enabled detailed solution-based photophysical studies using ultrafast transient absorption and infrared spectroscopy, executed without the generation of permanent photoproducts. Static Fourier transform infrared and Raman spectra (λ = 785 nm) of these two molecules revealed weak but measurable Ir-H and Ir-D stretching vibrations centered at 2120 and 1510 cm, respectively. Short-lived (τ = 25 ps) MLCT excited states were observed for both cis-[Ir(bpy)H] and cis-[Ir(bpy)D] following femtosecond pulsed laser excitation at 480 nm in visible and near-IR transient absorption experiments. A similar time constant was measured for the in-phase and out-of-phase Ir-H stretching modes of the triplet excited state between 1900 and 2200 cm using transient IR spectroscopy. The Ir-D stretching modes in the MLCT excited state were masked by bpy-localized vibrations rendering quantitative evaluation of these modes difficult. The time-resolved infrared data were consistent with density functional theory calculated mid-IR difference spectra in both of these molecules, yielding quantitative matches to the measured IR difference spectra. The information presented here provides valuable insight for understanding the primary photophysical events and transient absorption and IR spectroscopic signatures likely to be encountered throughout metal hydride photochemistry.
几十年来,过渡金属氢化物一直处于众多利用光酸或光氢化物生成的光催化反应的前沿。最重要的是M-H键本身的性质,它通常是光化学反应的主要位点,特别是在具有金属到配体电荷转移(MLCT)激发态的Ir(III)氢化物中。作为理解Ir(III)二亚胺氢化物MLCT激发态的基本光谱学和光物理学的出发点,制备并研究了顺式-[Ir(bpy)H](bpy = 2,2'-联吡啶)及其氘代类似物顺式-[Ir(bpy)D]。这些分子的稳健性质使得能够使用超快瞬态吸收和红外光谱进行基于溶液的详细光物理研究,且不会产生永久性光产物。这两种分子的静态傅里叶变换红外和拉曼光谱(λ = 785 nm)显示出分别以2120和1510 cm为中心的微弱但可测量的Ir-H和Ir-D伸缩振动。在可见光和近红外瞬态吸收实验中,在480 nm的飞秒脉冲激光激发后,顺式-[Ir(bpy)H]和顺式-[Ir(bpy)D]均观察到短寿命(τ = 25 ps)的MLCT激发态。使用瞬态红外光谱法测量了三重态激发态在1900至2200 cm之间的同相和异相Ir-H伸缩模式的类似时间常数。MLCT激发态中的Ir-D伸缩模式被bpy局部振动掩盖,使得对这些模式的定量评估变得困难。时间分辨红外数据与这两种分子中密度泛函理论计算的中红外差谱一致,与测量的红外差谱产生了定量匹配。这里呈现的信息为理解整个金属氢化物光化学中可能遇到的主要光物理事件以及瞬态吸收和红外光谱特征提供了有价值的见解。