Suppr超能文献

中国武汉市江汉区交通碰撞的网络约束时空聚类分析。

Network-constrained spatio-temporal clustering analysis of traffic collisions in Jianghan District of Wuhan, China.

机构信息

State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan, China.

China Data Center, University of Michigan, Ann Arbor, United States of America.

出版信息

PLoS One. 2018 Apr 19;13(4):e0195093. doi: 10.1371/journal.pone.0195093. eCollection 2018.

Abstract

The analysis of traffic collisions is essential for urban safety and the sustainable development of the urban environment. Reducing the road traffic injuries and the financial losses caused by collisions is the most important goal of traffic management. In addition, traffic collisions are a major cause of traffic congestion, which is a serious issue that affects everyone in the society. Therefore, traffic collision analysis is essential for all parties, including drivers, pedestrians, and traffic officers, to understand the road risks at a finer spatio-temporal scale. However, traffic collisions in the urban context are dynamic and complex. Thus, it is important to detect how the collision hotspots evolve over time through spatio-temporal clustering analysis. In addition, traffic collisions are not isolated events in space. The characteristics of the traffic collisions and their surrounding locations also present an influence of the clusters. This work tries to explore the spatio-temporal clustering patterns of traffic collisions by combining a set of network-constrained methods. These methods were tested using the traffic collision data in Jianghan District of Wuhan, China. The results demonstrated that these methods offer different perspectives of the spatio-temporal clustering patterns. The weighted network kernel density estimation provides an intuitive way to incorporate attribute information. The network cross K-function shows that there are varying clustering tendencies between traffic collisions and different types of POIs. The proposed network differential Local Moran's I and network local indicators of mobility association provide straightforward and quantitative measures of the hotspot changes. This case study shows that these methods could help researchers, practitioners, and policy-makers to better understand the spatio-temporal clustering patterns of traffic collisions.

摘要

交通事故分析对于城市安全和城市环境的可持续发展至关重要。减少道路交通事故造成的伤害和经济损失是交通管理的最重要目标。此外,交通事故是交通拥堵的主要原因之一,这是一个影响社会中每个人的严重问题。因此,交通事故分析对于司机、行人和交通官员等各方来说都是必要的,以便在更精细的时空尺度上了解道路风险。然而,城市环境中的交通事故是动态且复杂的。因此,通过时空聚类分析来检测碰撞热点随时间的演变非常重要。此外,交通事故在空间上并不是孤立的事件。交通事故的特征及其周围位置也对聚类有一定的影响。本研究试图通过结合一系列基于网络的方法来探索交通事故的时空聚类模式。这些方法在中国武汉江汉区的交通事故数据中进行了测试。结果表明,这些方法提供了交通事故时空聚类模式的不同视角。加权网络核密度估计提供了一种直观的方法来合并属性信息。网络交叉 K-函数表明,交通事故与不同类型的 POI 之间存在不同的聚类趋势。所提出的网络差分局部 Moran's I 和网络局部移动性关联指标提供了热点变化的直接和定量的度量。本案例研究表明,这些方法可以帮助研究人员、从业者和决策者更好地理解交通事故的时空聚类模式。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b35f/5909624/93eb6f824b8d/pone.0195093.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验