Picarro Inc., United States.
International Atomic Energy Agency (IAEA), Vienna, Austria.
Talanta. 2018 Jul 1;184:73-86. doi: 10.1016/j.talanta.2018.02.076. Epub 2018 Feb 24.
The manuscript explores some advantages and limitations of laser based optical spectroscopy, aimed at achieving robust, high-reproducibility CO and CO ratio determinations on the VPDB-CO δC scale by measuring the absorbance of line pairs of CO and CO. In particular, the sensitivities of spectroscopic lines to both pressure (P) and temperature (T) are discussed. Based on the considerations and estimations presented, a level of reproducibility of the CO/CO ratio determinations may be achieved of about 10. Thus one may establish an optical spectroscopic measurement technique for robust, high-precision CO and CO ratio measurements aimed at very low uncertainty. (Notably, creating such an optical instrument and developing technical solutions is beyond the scope of this paper.) The total combined uncertainty will also include the uncertainty component(s) related to the accuracy of calibration on the VPDB-CO δC scale. Addressing high-accuracy calibrations is presently not straightforward - absolute numerical values of C/C for the VPDB-CO scale are not well known. Traditional stable isotope mass-spectrometry uses calibrations vs CO evolved from the primary carbonate reference materials; which can hardly be used for calibrating commercial optical stable isotope analysers. In contrast to mass-spectrometry, the major advantage of the laser-based spectrometric technique detailed in this paper is its high robustness. Therefore one can introduce a new spectrometric δC characterisation method which, being once well-calibrated on the VPDB-CO scale, may not require any further (re-)calibrations. This can be used for characterisation of δC in CO-in-air mixtures with high precision and also with high accuracy. If this technique can be realised with the estimated long-term reproducibility (order of 10), it could potentially serve as a more convenient Optical Transfer Standard (OTS), characterising large amounts of CO gas mixtures on the VPDB-CO δC scale without having to compare to carbonate-evolved CO. Furthermore, if the OTS method proves to be successful, it might be considered for re-defining the VPDB-CO δC-scale as the ratio of selected CO spectroscopic absorbance lines measured at pre-defined T & P conditions. The approach can also be expanded to δO characterisation (using OCO and OCO absorbance lines) of CO gas mixtures and potentially to other isotope ratios of other gases.
本文探讨了基于激光的光光谱学的一些优点和局限性,旨在通过测量 CO 和 CO 的吸收线对来实现稳健、可重现的 VPDB-COδC 标度上的 CO 和 CO 比的高精度测定。特别是,讨论了光谱线对压力(P)和温度(T)的灵敏度。基于提出的考虑和估计,CO/CO 比测定的可重现性水平可以达到约 10。因此,可以建立一种用于稳健、高精度 CO 和 CO 比测量的光学光谱测量技术,以实现非常低的不确定性。(值得注意的是,制造这种光学仪器和开发技术解决方案超出了本文的范围。)总合成不确定度还将包括与 VPDB-COδC 标度上的校准精度相关的不确定度分量。目前,高精度校准并不简单 - VPDB-CO 标度上的 C/C 的绝对值并不为人所知。传统的稳定同位素质谱分析使用从主要碳酸盐参考物质中演化出来的 CO 进行校准;这几乎不能用于校准商业光学稳定同位素分析仪。与质谱分析相比,本文详细介绍的基于激光的光谱技术的主要优点是其高度稳健性。因此,可以引入一种新的光谱δC 特征化方法,该方法一旦在 VPDB-CO 标度上进行了良好的校准,就可能不需要进一步(重新)校准。这可用于高精度和高准确度的 CO 空气混合物中的 δC 特征化。如果该技术能够实现估计的长期重现性(约为 10),则可以作为更方便的光学传递标准(OTS),无需与碳酸盐衍生的 CO 进行比较,即可对 VPDB-COδC 标度上的大量 CO 气体混合物进行特征化。此外,如果 OTS 方法被证明是成功的,它可能会被考虑重新定义 VPDB-COδC 标度为在预定义 T&P 条件下测量的选定 CO 光谱吸收线的比值。该方法还可以扩展到 CO 气体混合物的δO 特征化(使用 OCO 和 OCO 吸收线),并可能扩展到其他气体的其他同位素比。