School of Physics and Materials Science, Anhui University, Hefei 230601, China.
Nanoscale. 2018 May 3;10(17):7946-7956. doi: 10.1039/c8nr01095a.
Excellent corrosion resistance is crucial for photovoltaic devices to acquire high and stable performance under high corrosive complicated environments. Creative inspiration comes from sandwich construction, whereby Fe3O4 nanoparticles were anchored onto hollow core-shell carbon mesoporous microspheres and wrapped by N-graphene nanosheets (HCCMS/Fe3O4@N-RGO) to obtain integrated high corrosive resistance and stability. The as-prepared multiple composite material possesses outstanding performance as a result of structure optimization, performance improvement, and interface synergy. Therefore, it can effectively suppress corrosion from the electrolyte in recycled tests many times, indicating the ultrahigh corrosion resistance life of this double carbon-based nanocomposite. Furthermore, the electrical conductivity and conversion efficiency of the composite are well maintained due to the triple synergistic interactions, which could serve as a guideline in establishing high-performance multifunctional HCCMS/Fe3O4@N-RGO with great prospects in energy devices, such as lithium batteries, supercapacitors and electrode materials, etc.
优异的耐腐蚀性对于光伏器件在高腐蚀性复杂环境下获得高且稳定的性能至关重要。创意灵感来自于三明治结构,其中 Fe3O4 纳米颗粒被锚定在中空核壳碳介孔微球上,并被 N-石墨烯纳米片(HCCMS/Fe3O4@N-RGO)包裹,以获得综合的高耐腐蚀性和稳定性。由于结构优化、性能提高和界面协同作用,所制备的多种复合材料具有出色的性能。因此,它可以在多次循环测试中有效地抑制来自电解质的腐蚀,表明这种双碳基纳米复合材料具有超高的耐腐蚀寿命。此外,由于三重协同相互作用,复合材料的电导率和转换效率得到了很好的保持,这可为建立高性能多功能 HCCMS/Fe3O4@N-RGO 提供指导,在锂电池、超级电容器和电极材料等能源设备中具有广阔的前景。