Alabugin Igor V, Gonzalez-Rodriguez Edgar
Department of Chemistry and Biochemistry , Florida State University , Tallahassee , Florida 32306 , United States.
Acc Chem Res. 2018 May 15;51(5):1206-1219. doi: 10.1021/acs.accounts.8b00026. Epub 2018 Apr 20.
Do not bend the triple bonds! This familiar undergraduate mantra must be disobeyed if the alkyne group is used as a building block in molecular construction. This Account will describe our exploits in "alkyne origami", that is, folding oligoalkynes into new shapes via cyclization cascades. This research stems from a set of guidelines for the cyclizations of alkynes that we suggested in 2011 ( Gilmore Chem. Rev. 2011 , 111 , 6513 ; Alabugin J. Am. Chem. Soc. 2011 , 133 , 12608 ). The guidelines blended critical analysis of ∼40 years of experimental research with computations into the comprehensive predictions of the relative favorability of dig-cyclizations of anions and radicals. In this Account, we will show how this new understanding has been instrumental in building polyaromatics. In particular, we illustrate the utility of these stereoelectronic models by developing a toolbox of practical, selective, and efficient synthetic transformations. The high energy and high carbon content render alkynes the perfect precursors for the preparation of polyaromatic ribbons and other carbon-rich materials with precisely controlled structure and reactivity. Still, the paradox of alkyne reactivity (alkynes store a lot of energy but are protected kinetically by their relatively strong π-bonds) requires precise use of stereoelectronic factors for lowering the activation barriers for alkyne cyclizations. These factors are drastically different in the "all-exo" and the "all-endo" cyclization cascades of oligoynes. This Account will highlight the interplay between the stereoelectronics of bond formation and topology of acyclic precursor "folding" into a polycyclic ribbon. The topology of folding is simpler for the endo cascades, which are compatible with initiation either at the edge or at the center. In contrast, the exo cascades require precise folding of an oligoalkyne ribbon by starting the cascade exactly at the center of the chain. These differences define the key challenges in the design of these two types of alkyne cyclization cascades. For the endo processes, the folding is simple, but these processes require a strategy ("LUMO Umpolung") for inverting the usual stereoelectronic requirements of alkyne cyclizations. We also show how alkenes can be used as alkyne equivalents in cyclizations coupled with fragmentations and how one can make endo cyclization products without ever going through an endo cyclization. In contrast, each elementary step of the exo cascades benefits from the inherent exo preference for the radical attack, but these cascades require precise initiation by starting exactly at the central alkyne unit of the oligoyne. This strict selectivity requirement led to the development of traceless directing groups capable of supramolecular assistance to the initiation step and self-terminating departure at the end of the cascade. With attention to electronic effects that can stop radical cascades, oligoalkynes can be selectively converted into precisely shaped and functionalized polyaromatic products. The generality of these concepts is further illustrated by the development of radical "peri annulations" at the zigzag edge of acenes.
不要弯折三键!但如果炔基被用作分子构建中的一个结构单元,这句常见的本科化学口诀就必须被打破。本综述将描述我们在“炔烃折纸术”方面的探索,即通过环化级联反应将低聚炔烃折叠成新的形状。这项研究源于我们在2011年提出的一套炔烃环化指导原则(吉尔摩,《化学评论》,2011年,第111卷,6513页;阿拉布金,《美国化学会志》,2011年,第133卷,12608页)。这些指导原则将对约40年实验研究的批判性分析与计算相结合,对阴离子和自由基的双环化反应的相对有利性进行了全面预测。在本综述中,我们将展示这种新的认识如何在构建多环芳烃中发挥重要作用。特别是,我们通过开发一套实用、选择性高且高效的合成转化工具箱,来说明这些立体电子模型的实用性。高能量和高碳含量使炔烃成为制备结构和反应性精确可控的多环芳烃带及其他富碳材料的理想前体。然而,炔烃反应性的悖论(炔烃储存了大量能量,但由于其相对较强的π键在动力学上受到保护)要求精确运用立体电子因素来降低炔烃环化的活化能垒。在低聚炔烃的“全外向”和“全内向”环化级联反应中,这些因素有很大不同。本综述将突出键形成的立体电子学与无环前体“折叠”成多环带的拓扑结构之间的相互作用。内向级联反应的折叠拓扑结构更简单,它既可以从边缘也可以从中心引发反应。相比之下,外向级联反应需要通过从链的中心精确启动级联反应,使低聚炔烃带进行精确折叠。这些差异定义了这两种炔烃环化级联反应设计中的关键挑战。对于内向反应过程,折叠简单,但这些过程需要一种策略(“最低未占分子轨道极性反转”)来颠倒炔烃环化通常的立体电子要求。我们还展示了如何在环化与碎片化相结合的反应中,将烯烃用作炔烃的等效物,以及如何在不经过内向环化的情况下制备内向环化产物。相反,外向级联反应的每个基本步骤都受益于自由基进攻固有的外向偏好,但这些级联反应需要通过从低聚炔烃的中心炔基单元精确启动来实现严格的选择性。这种严格的选择性要求促使了无痕导向基团的发展,这些基团能够在超分子层面辅助引发步骤,并在级联反应结束时自终止离去。考虑到可能终止自由基级联反应的电子效应,低聚炔烃可以被选择性地转化为形状精确且功能化的多环芳烃产物。在并苯的锯齿边缘进行自由基“周边环化”的发展进一步说明了这些概念的通用性。