Cambridge Institute for Medical Research, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0XY, UK.
Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK.
Cell. 2018 Apr 19;173(3):720-734.e15. doi: 10.1016/j.cell.2018.03.056.
Reversible phase separation underpins the role of FUS in ribonucleoprotein granules and other membrane-free organelles and is, in part, driven by the intrinsically disordered low-complexity (LC) domain of FUS. Here, we report that cooperative cation-π interactions between tyrosines in the LC domain and arginines in structured C-terminal domains also contribute to phase separation. These interactions are modulated by post-translational arginine methylation, wherein arginine hypomethylation strongly promotes phase separation and gelation. Indeed, significant hypomethylation, which occurs in FUS-associated frontotemporal lobar degeneration (FTLD), induces FUS condensation into stable intermolecular β-sheet-rich hydrogels that disrupt RNP granule function and impair new protein synthesis in neuron terminals. We show that transportin acts as a physiological molecular chaperone of FUS in neuron terminals, reducing phase separation and gelation of methylated and hypomethylated FUS and rescuing protein synthesis. These results demonstrate how FUS condensation is physiologically regulated and how perturbations in these mechanisms can lead to disease.
可逆相分离是 FUS 在核糖核蛋白颗粒和其他无膜细胞器中的作用基础,部分是由 FUS 的固有无序低复杂度 (LC) 结构域驱动的。在这里,我们报告说 LC 结构域中的酪氨酸和结构域 C 端的精氨酸之间的合作阳离子-π 相互作用也有助于相分离。这些相互作用受翻译后精氨酸甲基化的调节,其中精氨酸低甲基化强烈促进相分离和凝胶化。事实上,在 FUS 相关的额颞叶痴呆 (FTLD) 中发生显著的低甲基化,导致 FUS 凝聚成稳定的分子间β- sheet 丰富的水凝胶,破坏 RNP 颗粒功能并损害神经元末端的新蛋白质合成。我们表明,在神经元末端,转运蛋白作为 FUS 的生理分子伴侣,减少甲基化和低甲基化 FUS 的相分离和凝胶化,并恢复蛋白质合成。这些结果表明了 FUS 凝聚如何受到生理调节,以及这些机制的干扰如何导致疾病。