Center for Metabolic Disease Research, Temple University - Lewis Katz School of Medicine, 3500 North Broad Street, Philadelphia, PA 19140, USA.
Center for Metabolic Disease Research, Temple University - Lewis Katz School of Medicine, 3500 North Broad Street, Philadelphia, PA 19140, USA; The Geisinger Commonwealth School of Medicine, Scranton, PA, USA.
Redox Biol. 2018 Jul;17:70-88. doi: 10.1016/j.redox.2018.03.015. Epub 2018 Apr 4.
Hyperhomocysteinemia (HHcy) is an independent risk factor for cardiovascular disease (CVD) which has been implicated in matochondrial (Mt) function impairment. In this study, we characterized Hcy metabolism in mouse tissues by using LC-ESI-MS/MS analysis, established tissue expression profiles for 84 nuclear-encoded Mt electron transport chain complex (nMt-ETC-Com) genes in 20 human and 19 mouse tissues by database mining, and modeled the effect of HHcy on Mt-ETC function. Hcy levels were high in mouse kidney/lung/spleen/liver (24-14 nmol/g tissue) but low in brain/heart (~5 nmol/g). S-adenosylhomocysteine (SAH) levels were high in the liver/kidney (59-33 nmol/g), moderate in lung/heart/brain (7-4 nmol/g) and low in spleen (1 nmol/g). S-adenosylmethionine (SAM) was comparable in all tissues (42-18 nmol/g). SAM/SAH ratio was as high as 25.6 in the spleen but much lower in the heart/lung/brain/kidney/liver (7-0.6). The nMt-ETC-Com genes were highly expressed in muscle/pituitary gland/heart/BM in humans and in lymph node/heart/pancreas/brain in mice. We identified 15 Hcy-suppressive nMt-ETC-Com genes whose mRNA levels were negatively correlated with tissue Hcy levels, including 11 complex-I, one complex-IV and two complex-V genes. Among the 11 Hcy-suppressive complex-I genes, 4 are complex-I core subunits. Based on the pattern of tissue expression of these genes, we classified tissues into three tiers (high/mid/low-Hcy responsive), and defined heart/eye/pancreas/brain/kidney/liver/testis/embryonic tissues as tier 1 (high-Hcy responsive) tissues in both human and mice. Furthermore, through extensive literature mining, we found that most of the Hcy-suppressive nMt-ETC-Com genes were suppressed in HHcy conditions and related with Mt complex assembly/activity impairment in human disease and experimental models. We hypothesize that HHcy inhibits Mt complex I gene expression leading to Mt dysfunction.
高同型半胱氨酸血症(HHcy)是心血管疾病(CVD)的独立危险因素,与线粒体(Mt)功能障碍有关。在这项研究中,我们使用 LC-ESI-MS/MS 分析来描述小鼠组织中的 Hcy 代谢,通过数据库挖掘建立了 20 个人类和 19 种小鼠组织中 84 种核编码 Mt 电子传递链复合物(nMt-ETC-Com)基因的组织表达谱,并模拟 HHcy 对 Mt-ETC 功能的影响。Hcy 水平在小鼠的肾脏/肺/脾/肝中较高(24-14 nmol/g 组织),而在大脑/心脏中较低(~5 nmol/g)。S-腺苷同型半胱氨酸(SAH)水平在肝脏/肾脏中较高(59-33 nmol/g),在肺/心脏/大脑中中等(7-4 nmol/g),在脾脏中较低(1 nmol/g)。S-腺苷甲硫氨酸(SAM)在所有组织中都相当(42-18 nmol/g)。SAM/SAH 比值在脾脏中高达 25.6,但在心脏/肺/脑/肾/肝中则低得多(7-0.6)。nMt-ETC-Com 基因在人类的肌肉/垂体腺/心脏/骨髓和小鼠的淋巴结/心脏/胰腺/大脑中高度表达。我们鉴定了 15 个 Hcy 抑制性 nMt-ETC-Com 基因,其 mRNA 水平与组织 Hcy 水平呈负相关,包括 11 个复合物 I、一个复合物 IV 和两个复合物 V 基因。在 11 个 Hcy 抑制性复合物 I 基因中,有 4 个是复合物 I 核心亚基。根据这些基因的组织表达模式,我们将组织分为三个层次(高/中/低 Hcy 反应),并定义心脏/眼睛/胰腺/大脑/肾脏/睾丸/胚胎组织为人类和小鼠中第一层次(高 Hcy 反应)的组织。此外,通过广泛的文献挖掘,我们发现大多数 Hcy 抑制性 nMt-ETC-Com 基因在 HHcy 条件下受到抑制,并与人类疾病和实验模型中的 Mt 复合物组装/活性障碍有关。我们假设 HHcy 抑制 Mt 复合物 I 基因表达,导致 Mt 功能障碍。