Physical Chemistry and Applied Spectroscopy (C-PCS), Chemistry Division , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States.
State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics , Chinese Academy of Sciences , 457 Zhongshan Road , Dalian 116023 , China.
ACS Appl Mater Interfaces. 2018 May 9;10(18):15665-15672. doi: 10.1021/acsami.8b00649. Epub 2018 Apr 30.
For the first time, we report that graphene oxide (GO) can be used as a new "dual-role" binder for Si nanoparticles (SiNPs)-based lithium-ion batteries (LIBs). GO not only provides a graphene-like porous 3D framework for accommodating the volume changes of SiNPs during charging/discharging cycles, but also acts as a polymer-like binder that forms strong chemical bonds with SiNPs through its Si-OH functional groups to trap and stabilize SiNPs inside the electrode. Leveraging this unique dual-role of GO binder, we fabricated GO/SiNPs electrodes with remarkably improved performances as compared to using the conventional polyvinylidene fluoride (PVDF) binder. Specifically, the GO/SiNPs electrode showed a specific capacity of 2400 mA h g at the 50th cycle and 2000 mA h g at the 100th cycle, whereas the SiNPs/PVDF electrode only showed 456 mAh g at the 50th cycle and 100 mAh g at 100th cycle. Moreover, the GO/SiNPs film maintained its structural integrity and formed a stable solid-electrolyte interphase (SEI) film after 100 cycles. These results, combined with the well-established facile synthesis of GO, indicate that GO can be an excellent binder for developing high performance Si-based LIBs.
我们首次报道氧化石墨烯(GO)可用作硅纳米颗粒(SiNPs)基锂离子电池(LIBs)的新型“双重作用”粘结剂。GO 不仅为 SiNPs 提供了一种类似石墨烯的多孔 3D 框架,以适应充放电循环中 SiNPs 的体积变化,而且还可以作为聚合物粘结剂,通过其 Si-OH 官能团与 SiNPs 形成强化学键,将 SiNPs 捕获并稳定在电极内部。利用 GO 粘结剂的这种独特双重作用,我们制造的 GO/SiNPs 电极的性能得到了显著改善,与使用传统的聚偏二氟乙烯(PVDF)粘结剂相比。具体而言,GO/SiNPs 电极在第 50 次循环时的比容量为 2400 mA h g,在第 100 次循环时的比容量为 2000 mA h g,而 SiNPs/PVDF 电极在第 50 次循环时的比容量仅为 456 mAh g,在第 100 次循环时的比容量仅为 100 mAh g。此外,GO/SiNPs 薄膜在 100 次循环后保持其结构完整性,并形成稳定的固体电解质界面(SEI)膜。这些结果,再加上 GO 易于合成这一事实,表明 GO 可以成为开发高性能 Si 基 LIBs 的理想粘结剂。