Suppr超能文献

在两阶段成组序贯设计中,当试验提前终止时,在假设渐近正态性的情况下使用先验信息进行条件估计。

Conditional estimation using prior information in 2-stage group sequential designs assuming asymptotic normality when the trial terminated early.

作者信息

Shimura Masashi, Maruo Kazushi, Gosho Masahiko

机构信息

Data Science Department, Taiho Pharmaceutical Co, Ltd, Chiyoda-ku, Tokyo, Japan.

Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan.

出版信息

Pharm Stat. 2018 Sep;17(5):400-413. doi: 10.1002/pst.1859. Epub 2018 Apr 23.

Abstract

Two-stage designs are widely used to determine whether a clinical trial should be terminated early. In such trials, a maximum likelihood estimate is often adopted to describe the difference in efficacy between the experimental and reference treatments; however, this method is known to display conditional bias. To reduce such bias, a conditional mean-adjusted estimator (CMAE) has been proposed, although the remaining bias may be nonnegligible when a trial is stopped for efficacy at the interim analysis. We propose a new estimator for adjusting the conditional bias of the treatment effect by extending the idea of the CMAE. This estimator is calculated by weighting the maximum likelihood estimate obtained at the interim analysis and the effect size prespecified when calculating the sample size. We evaluate the performance of the proposed estimator through analytical and simulation studies in various settings in which a trial is stopped for efficacy or futility at the interim analysis. We find that the conditional bias of the proposed estimator is smaller than that of the CMAE when the information time at the interim analysis is small. In addition, the mean-squared error of the proposed estimator is also smaller than that of the CMAE. In conclusion, we recommend the use of the proposed estimator for trials that are terminated early for efficacy or futility.

摘要

两阶段设计被广泛用于确定一项临床试验是否应提前终止。在这类试验中,常采用最大似然估计来描述试验治疗与对照治疗之间的疗效差异;然而,已知这种方法存在条件偏差。为减少此类偏差,已提出一种条件均值调整估计量(CMAE),不过,当中期分析因疗效而提前终止试验时,剩余偏差可能仍不可忽略。我们通过扩展CMAE的理念,提出一种用于调整治疗效果条件偏差的新估计量。该估计量通过对中期分析时获得的最大似然估计值与计算样本量时预先设定的效应量进行加权来计算。我们在各种中期分析因疗效或无效性而提前终止试验的情况下,通过分析研究和模拟研究来评估所提出估计量的性能。我们发现,当中期分析时的信息时间较短时,所提出估计量的条件偏差小于CMAE的条件偏差。此外,所提出估计量的均方误差也小于CMAE的均方误差。总之,对于因疗效或无效性而提前终止的试验,我们建议使用所提出的估计量。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验