Advanced Display Research Center (ADRC), Department of Information Display , Kyung Hee University , Dongdaemoon-ku , Seoul 130-701 , Korea.
ACS Appl Mater Interfaces. 2018 May 16;10(19):16852-16860. doi: 10.1021/acsami.8b01292. Epub 2018 May 1.
Incorporation of rubidium (Rb) into mixed lead halide perovskites has recently achieved record power conversion efficiency and excellent stability in perovskite solar cells. Inspired by these tremendous advances in photovoltaics, this study demonstrates the impact of Rb incorporation into MAPbBr-based light emitters. Rb partially substitutes MA (methyl ammonium), resulting in a mixed cation perovskite with the formula MARb PbBr. Pure MAPbBr crystallizes into a polycrystalline layer with highly defective sub-micrometer grains. However, the addition of a small amount of Rb forms MARb PbBr nanocrystals (10 nm) embedded in an amorphous matrix of MA/Rb Br. These nanocrystals grow into defect-free sub-micrometer-sized crystallites with further addition of Rb, resulting in a 3-fold increase in exciton lifetime when the molar ratio of MABr/RbBr is 1:1. A thin film fabricated with a 1:1 molar ratio of MABr/RbBr showed the best electroluminescent properties with a current efficiency (CE) of 9.45 cd/A and a luminance of 7694 cd/m. These values of CE and luminance are, respectively, 19 and 10 times larger than those achieved by pure MAPbBr devices (0.5 cd/A and 790 cd/m). We believe this work provides important information on the future compositional optimization of Rb-based mixed cation perovskites for obtaining high-performance light-emitting diodes.
铷(Rb)掺入混合卤化铅钙钛矿最近在钙钛矿太阳能电池中实现了创纪录的功率转换效率和优异的稳定性。受这些光伏领域巨大进步的启发,本研究展示了 Rb 掺入基于 MAPbBr 的发光体的影响。Rb 部分取代 MA(甲基铵),形成具有通式 MARbPbBr 的混合阳离子钙钛矿。纯 MAPbBr 结晶成多晶层,具有高度缺陷的亚微米晶粒。然而,少量 Rb 的添加会形成 MARbPbBr 纳米晶(10nm),嵌入 MA/RbBr 的非晶基质中。随着 Rb 的进一步添加,这些纳米晶生长成无缺陷的亚微米大小的晶粒,当 MABr/RbBr 的摩尔比为 1:1 时,激子寿命增加了 3 倍。当 MABr/RbBr 的摩尔比为 1:1 时,用薄膜制造的器件显示出最佳的电致发光性能,电流效率(CE)为 9.45 cd/A,亮度为 7694 cd/m。这些 CE 和亮度值分别是纯 MAPbBr 器件(0.5 cd/A 和 790 cd/m)的 19 倍和 10 倍。我们相信这项工作为基于 Rb 的混合阳离子钙钛矿的未来组成优化提供了重要信息,以获得高性能的发光二极管。