Institut für Theoretische Physik, Universität Innsbruck, A-6020 Innsbruck, Austria.
Max-Planck-Institut für Physik komplexer Systeme, D-01187 Dresden, Germany.
Phys Rev Lett. 2018 Mar 23;120(12):123601. doi: 10.1103/PhysRevLett.120.123601.
Supersolids are characterized by the counterintuitive coexistence of superfluid and crystalline order. Here we study a supersolid phase emerging in the steady state of a driven-dissipative system. We consider a transversely pumped Bose-Einstein condensate trapped along the axis of a ring cavity and coherently coupled to a pair of degenerate counterpropagating cavity modes. Above a threshold pump strength the interference of photons scattered into the two cavity modes results in an emergent superradiant lattice, which spontaneously breaks the continuous translational symmetry towards a periodic atomic pattern. The crystalline steady state inherits the superfluidity of the Bose-Einstein condensate, thus exhibiting genuine properties of a supersolid. A gapless collective Goldstone mode correspondingly appears in the superradiant phase, which can be nondestructively monitored via the relative phase of the two cavity modes on the cavity output. Despite cavity-photon losses the Goldstone mode remains undamped, indicating the robustness of the supersolid phase.
超固态的特征是超流和晶体有序的反直觉共存。在这里,我们研究了在驱动耗散系统的稳态中出现的超固态相。我们考虑了一个横向泵送的玻色-爱因斯坦凝聚体,沿着环形腔的轴被捕获,并与一对简并的反向传播腔模式相干耦合。在阈值泵浦强度以上,散射到两个腔模式中的光子的干涉导致出现超辐射晶格,该晶格自发地打破了朝向周期性原子图案的连续平移对称性。晶体稳态继承了玻色-爱因斯坦凝聚体的超流动性,因此表现出真正的超固态性质。无间隙集体 Goldstone 模式相应地出现在超辐射相中,可以通过腔输出中两个腔模式的相对相位非破坏性地监测到。尽管存在腔光子损耗,但 Goldstone 模式仍然没有阻尼,表明超固态相的鲁棒性。