Suppr超能文献

细胞骨架重构诱导网织红细胞成熟过程中细胞膜硬度和稳定性的变化。

Cytoskeleton Remodeling Induces Membrane Stiffness and Stability Changes of Maturing Reticulocytes.

机构信息

Division of Applied Mathematics, Brown University, Providence, Rhode Island.

Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts.

出版信息

Biophys J. 2018 Apr 24;114(8):2014-2023. doi: 10.1016/j.bpj.2018.03.004.

Abstract

Reticulocytes, the precursors of erythrocytes, undergo drastic alterations in cell size, shape, and deformability during maturation. Experimental evidence suggests that young reticulocytes are stiffer and less stable than their mature counterparts; however, the underlying mechanism is yet to be fully understood. Here, we develop a coarse-grained molecular-dynamics reticulocyte membrane model to elucidate how the membrane structure of reticulocytes contributes to their particular biomechanical properties and pathogenesis in blood diseases. First, we show that the extended cytoskeleton in the reticulocyte membrane is responsible for its increased shear modulus. Subsequently, we quantify the effect of weakened cytoskeleton on the stiffness and stability of reticulocytes, via which we demonstrate that the extended cytoskeleton along with reduced cytoskeleton connectivity leads to the seeming paradox that reticulocytes are stiffer and less stable than the mature erythrocytes. Our simulation results also suggest that membrane budding and the consequent vesiculation of reticulocytes can occur independently of the endocytosis-exocytosis pathway, and thus, it may serve as an additional means of removing unwanted membrane proteins from reticulocytes. Finally, we find that membrane budding is exacerbated when the cohesion between the lipid bilayer and the cytoskeleton is compromised, which is in accord with the clinical observations that erythrocytes start shedding membrane surface at the reticulocyte stage in hereditary spherocytosis. Taken together, our results quantify the stiffness and stability change of reticulocytes during their maturation and provide, to our knowledge, new insights into the pathogenesis of hereditary spherocytosis and malaria.

摘要

网织红细胞是红细胞的前体,在成熟过程中细胞大小、形状和变形能力会发生剧烈变化。实验证据表明,年轻的网织红细胞比成熟的网织红细胞更硬、更不稳定;然而,其潜在机制尚未完全理解。在这里,我们开发了一个粗粒化的分子动力学网织红细胞膜模型,以阐明网织红细胞膜的结构如何导致其在血液疾病中的特殊生物力学特性和发病机制。首先,我们表明网织红细胞膜中伸展的细胞骨架是导致其剪切模量增加的原因。随后,我们通过量化细胞骨架减弱对网织红细胞刚性和稳定性的影响,证明了伸展的细胞骨架和减少的细胞骨架连接性导致网织红细胞比成熟红细胞更硬和更不稳定的似乎矛盾的现象。我们的模拟结果还表明,膜出芽和随后的网织红细胞囊泡化可以独立于内吞作用-外排作用途径发生,因此,它可能是从网织红细胞中去除不需要的膜蛋白的另一种手段。最后,我们发现当脂质双层和细胞骨架之间的内聚力受到损害时,膜出芽会加剧,这与遗传性球形红细胞增多症中临床观察到的红细胞从网织红细胞阶段开始脱落膜表面的结果一致。总之,我们的结果量化了网织红细胞在成熟过程中的刚性和稳定性变化,并为遗传性球形红细胞增多症和疟疾的发病机制提供了新的见解。

相似文献

1
Cytoskeleton Remodeling Induces Membrane Stiffness and Stability Changes of Maturing Reticulocytes.
Biophys J. 2018 Apr 24;114(8):2014-2023. doi: 10.1016/j.bpj.2018.03.004.
2
Theoretical model of reticulocyte to erythrocyte shape transformation.
J Theor Biol. 2006 Nov 7;243(1):24-38. doi: 10.1016/j.jtbi.2006.06.011. Epub 2006 Jun 20.
3
Member-associated changes during erythropoiesis. On the mechanism of maturation of reticulocytes to erythrocytes.
J Supramol Struct Cell Biochem. 1981;17(2):163-81. doi: 10.1002/jsscb.380170207.
4
Vesiculation of healthy and defective red blood cells.
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Jul;92(1):012715. doi: 10.1103/PhysRevE.92.012715. Epub 2015 Jul 21.
5
Studies on the biomechanical properties of maturing reticulocytes.
J Biomech. 2006;39(3):530-5. doi: 10.1016/j.jbiomech.2004.11.032.
6
Non-muscle myosin II drives vesicle loss during human reticulocyte maturation.
Haematologica. 2018 Dec;103(12):1997-2007. doi: 10.3324/haematol.2018.199083. Epub 2018 Aug 3.
7
Membrane instability in late-stage erythropoiesis.
Blood. 2001 Mar 15;97(6):1869-75. doi: 10.1182/blood.v97.6.1869.
8
Quantitative mass spectrometry of human reticulocytes reveal proteome-wide modifications during maturation.
Br J Haematol. 2018 Jan;180(1):118-133. doi: 10.1111/bjh.14976. Epub 2017 Nov 2.
9
Mechanism of protein sorting during erythroblast enucleation: role of cytoskeletal connectivity.
Blood. 2004 Mar 1;103(5):1912-9. doi: 10.1182/blood-2003-03-0928. Epub 2003 Oct 16.

引用本文的文献

2
Dynamic mechanisms for membrane skeleton transitions.
J Cell Sci. 2025 Feb 15;138(4). doi: 10.1242/jcs.263473. Epub 2025 Feb 28.
3
Dynamic mechanisms for membrane skeleton transitions.
bioRxiv. 2024 May 2:2024.04.29.591779. doi: 10.1101/2024.04.29.591779.
4
Anemia and Its Connections to Inflammation in Older Adults: A Review.
J Clin Med. 2024 Apr 2;13(7):2049. doi: 10.3390/jcm13072049.
5
Two-component macrophage model for active phagocytosis with pseudopod formation.
Biophys J. 2024 May 7;123(9):1069-1084. doi: 10.1016/j.bpj.2024.03.026. Epub 2024 Mar 25.
6
A combined computational and experimental investigation of the filtration function of splenic macrophages in sickle cell disease.
PLoS Comput Biol. 2023 Dec 13;19(12):e1011223. doi: 10.1371/journal.pcbi.1011223. eCollection 2023 Dec.
8
Red Blood Cell Deformability Is Expressed by a Set of Interrelated Membrane Proteins.
Int J Mol Sci. 2023 Aug 13;24(16):12755. doi: 10.3390/ijms241612755.
10
In silico and in vitro study of the adhesion dynamics of erythrophagocytosis in sickle cell disease.
Biophys J. 2023 Jun 20;122(12):2590-2604. doi: 10.1016/j.bpj.2023.05.022. Epub 2023 May 24.

本文引用的文献

1
Quantitative mass spectrometry of human reticulocytes reveal proteome-wide modifications during maturation.
Br J Haematol. 2018 Jan;180(1):118-133. doi: 10.1111/bjh.14976. Epub 2017 Nov 2.
2
Computational Biomechanics of Human Red Blood Cells in Hematological Disorders.
J Biomech Eng. 2017 Feb 1;139(2):0210081-02100813. doi: 10.1115/1.4035120.
3
MD/DPD Multiscale Framework for Predicting Morphology and Stresses of Red Blood Cells in Health and Disease.
PLoS Comput Biol. 2016 Oct 28;12(10):e1005173. doi: 10.1371/journal.pcbi.1005173. eCollection 2016 Oct.
4
Reversible host cell remodeling underpins deformability changes in malaria parasite sexual blood stages.
Proc Natl Acad Sci U S A. 2016 Apr 26;113(17):4800-5. doi: 10.1073/pnas.1520194113. Epub 2016 Apr 11.
5
Modeling of band-3 protein diffusion in the normal and defective red blood cell membrane.
Soft Matter. 2016 Apr 21;12(15):3643-53. doi: 10.1039/c4sm02201g.
6
Anatomy of the red cell membrane skeleton: unanswered questions.
Blood. 2016 Jan 14;127(2):187-99. doi: 10.1182/blood-2014-12-512772. Epub 2015 Nov 4.
7
Vesiculation of healthy and defective red blood cells.
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Jul;92(1):012715. doi: 10.1103/PhysRevE.92.012715. Epub 2015 Jul 21.
9
Multiple stiffening effects of nanoscale knobs on human red blood cells infected with Plasmodium falciparum malaria parasite.
Proc Natl Acad Sci U S A. 2015 May 12;112(19):6068-73. doi: 10.1073/pnas.1505584112. Epub 2015 Apr 27.
10
Host-parasite interactions that guide red blood cell invasion by malaria parasites.
Curr Opin Hematol. 2015 May;22(3):220-6. doi: 10.1097/MOH.0000000000000135.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验