Kalinay Pavol, Slanina František
Institute of Physics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 11 Bratislava, Slovakia.
J Phys Condens Matter. 2018 Jun 20;30(24):244002. doi: 10.1088/1361-648X/aac146. Epub 2018 Apr 30.
Diffusion of point-like particles in a two-dimensional channel of varying width is studied. The particles are driven by an arbitrary space dependent force. We construct a general recurrence procedure mapping the corresponding two-dimensional advection-diffusion equation onto the longitudinal coordinate x. Unlike the previous specific cases, the presented procedure enables us to find the one-dimensional description of the confined diffusion even for non-conservative (vortex) forces, e.g. caused by flowing solvent dragging the particles. We show that the result is again the generalized Fick-Jacobs equation. Despite of non existing scalar potential in the case of vortex forces, the effective one-dimensional scalar potential, as well as the corresponding quasi-equilibrium and the effective diffusion coefficient [Formula: see text] can be always found.
研究了点状粒子在宽度变化的二维通道中的扩散。粒子由任意空间相关力驱动。我们构建了一个通用的递推过程,将相应的二维平流扩散方程映射到纵向坐标(x)上。与之前的特定情况不同,所提出的过程使我们即使对于非保守(涡旋)力,例如由流动溶剂拖动粒子引起的力,也能够找到受限扩散的一维描述。我们表明结果再次是广义的菲克 - 雅各布斯方程。尽管在涡旋力的情况下不存在标量势,但总能找到有效的一维标量势以及相应的准平衡和有效扩散系数[公式:见原文]。