DeVilbiss Frank, Mandli Aravinda, Ramkrishna Doraiswami
School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907.
Biotechnol Prog. 2018 Jul;34(4):858-867. doi: 10.1002/btpr.2654. Epub 2018 Jul 1.
Diauxic growth of Escherichia coli is driven by a host of internal, complex regulatory actions. In this classic scenario of cellular control, the cell employs a rational algorithm to modulate its metabolism in a competitive fashion. Cybernetic models of metabolism, whose development now spans three decades, were first formulated to describe regulation of cells in complex, multi-substrate environments. They modeled this scenario using the hypothesis that the formation of the enzymatic machinery is regulated to maximize a return on investment. While this assumption is made on the basis of logical arguments rooted in evolutionary principles, little effort has been taken to validate if enzymes are truly synthesized in the same fashion that is predicted by cybernetic variables. This work revisits the original cybernetic models describing diauxic growth and compares their predictions of enzyme synthesis control with time series gene expression data in microarray and qRT-PCR formats. Three separate studies are made for two different strains of E. coli. The first is for the growth of E. coli BW25113 on a mixture of glucose and acetate, whose gene expression changes are metered by microarray. Another is also for the sequential consumption of glucose and acetate but involves strain MG1655 and employs qRT-PCR. The final is for E. coli MG1655 on glucose and lactose. By demonstrating how cybernetic variables for induced enzyme synthesis mimic the behavior of transcriptional data, a strong argument for using cybernetic models is made. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 34:858-867, 2018.
大肠杆菌的双相生长是由一系列复杂的内部调节作用驱动的。在这种经典的细胞控制情形中,细胞采用一种合理的算法以竞争方式调节其新陈代谢。代谢控制论模型的发展至今已有三十年,其最初是为描述细胞在复杂多底物环境中的调节作用而制定的。这些模型基于酶促机制的形成受到调节以最大化投资回报这一假设来模拟这种情形。虽然这一假设是基于源于进化原理的逻辑论证做出的,但几乎没有人努力去验证酶是否真的以控制论变量所预测的相同方式合成。这项工作重新审视了描述双相生长的原始控制论模型,并将其对酶合成控制的预测与微阵列和定量逆转录聚合酶链式反应(qRT-PCR)格式的时间序列基因表达数据进行了比较。针对两种不同的大肠杆菌菌株进行了三项独立研究。第一项研究是关于大肠杆菌BW25113在葡萄糖和乙酸盐混合物上的生长,其基因表达变化通过微阵列进行测量。另一项研究同样是关于葡萄糖和乙酸盐的顺序消耗,但涉及MG1655菌株并采用qRT-PCR。最后一项研究是关于大肠杆菌MG1655在葡萄糖和乳糖上的生长。通过证明诱导酶合成的控制论变量如何模拟转录数据的行为,为使用控制论模型提供了有力论据。© 2018美国化学工程师学会生物技术进展,34:858 - 867,2018年。