Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA.
Analyst. 2018 May 15;143(10):2323-2333. doi: 10.1039/c8an00138c.
Metal ions can play a significant role in a variety of important functions in protein systems including cofactor for catalysis, protein folding, assembly, structural stability and conformational change. In the present work, we examined the influence of alkali (Na, K and Cs), alkaline earth (Mg and Ca) and transition (Co, Ni and Zn) metal ions on the conformational space and analytical separation of mechanically interlocked lasso peptides. Syanodin I, sphingonodin I, caulonodin III and microcin J25, selected as models of lasso peptides, and their respective branched-cyclic topoisomers were submitted to native nESI trapped ion mobility spectrometry-mass spectrometry (TIMS-MS). The high mobility resolving power of TIMS permitted to group conformational families regardless of the metal ion. The lower diversity of conformational families for syanodin I as compared to the other lasso peptides supports that syanodin I probably forms tighter binding interactions with metal ions limiting their conformational space in the gas-phase. Conversely, the higher diversity of conformational families for the branched-cyclic topologies further supports that the metal ions probably interact with a higher number of electronegative groups arising from the fully unconstraint C-terminal part. A correlation between the lengths of the loop and the C-terminal tail with the conformational space of lasso peptides becomes apparent upon addition of metal ions. It was shown that the threaded C-terminal region in lasso peptides allows only for distinct interactions of the metal ion with either residues in the loop or tail region. This limits the size of the interacting region and apparently leads to a bias of metal ion binding in either the loop or tail region, depending whichever section is larger in the respective lasso peptide. For branched-cyclic peptides, the non-restricted C-terminal tail allows metal coordination by residues throughout this region, which can result in gas-phase structures that are sometimes even more compact than the lasso peptides. The high TIMS resolution also resulted in the separation of almost all lasso and branched-cyclic topoisomer metal ions (r ∼ 2.1 on average). It is also shown that the metal incorporation (e.g., doubly cesiated species) can lead to the formation of a simplified IMS pattern (or preferential conformers), which results in baseline analytical separation and discrimination between lasso and branched-cyclic topologies using TIMS-MS.
金属离子在蛋白质系统的各种重要功能中起着重要作用,包括催化的辅助因子、蛋白质折叠、组装、结构稳定性和构象变化。在本工作中,我们研究了碱(Na、K 和 Cs)、碱土金属(Mg 和 Ca)和过渡金属(Co、Ni 和 Zn)对机械互锁套索肽构象空间和分析分离的影响。选择作为套索肽模型的天青菌素 I、鞘氨醇菌素 I、钙调蛋白 III 和微菌素 J25 及其各自的支化环拓扑异构体,经过天然 nESI 捕获离子迁移谱-质谱(TIMS-MS)。TIMS 的高迁移率分辨率允许分组构象家族,而不论金属离子如何。与其他套索肽相比,天青菌素 I 的构象家族多样性较低,这支持天青菌素 I 可能与金属离子形成更紧密的结合相互作用,从而限制其在气相中的构象空间。相反,支化环拓扑的构象家族多样性较高,这进一步支持金属离子可能与完全不受约束的 C 末端部分产生的更多的电负性基团相互作用。在加入金属离子后,套索肽的环和 C 末端尾部的长度与构象空间之间的相关性变得明显。结果表明,套索肽中的穿线 C 末端区域仅允许金属离子与环或尾部区域中的残基进行独特的相互作用。这限制了相互作用区域的大小,并且显然导致金属离子结合偏向于环或尾部区域,具体取决于相应的套索肽中哪个区域更大。对于支化环肽,非受限的 C 末端尾部允许金属通过整个区域与残基配位,这可能导致气相结构有时甚至比套索肽更紧凑。高 TIMS 分辨率还导致几乎所有套索和支化环拓扑异构体的金属离子(平均 r ∼ 2.1)分离。还表明,金属掺入(例如,双铯化物种)可导致 IMS 图谱的简化(或优先构象)形成,从而导致使用 TIMS-MS 进行基线分析分离和区分套索和支化环拓扑。