Suppr超能文献

利用红色和绿色荧光钙指示剂对视网膜神经元进行体内功能成像。

In Vivo Functional Imaging of Retinal Neurons Using Red and Green Fluorescent Calcium Indicators.

机构信息

Center for Visual Science, University of Rochester, Rochester, NY, USA.

Flaum Eye Institute, University of Rochester, Rochester, NY, USA.

出版信息

Adv Exp Med Biol. 2018;1074:135-144. doi: 10.1007/978-3-319-75402-4_17.

Abstract

Adaptive optics retinal imaging of fluorescent calcium indicators is a minimally invasive method used to study retinal physiology over extended periods of time. It has potential for discovering novel retinal circuits, tracking retinal function in animal models of retinal disease, and assessing vision restoration therapy. We previously demonstrated functional adaptive optics imaging of retinal neurons in the living eye using green fluorescent calcium indicators; however, the use of green fluorescent indicators presents challenges that stem from the fact that they are excited by short-wavelength light. Using red fluorescent calcium indicators such as jRGECO1a, which is excited with longer-wavelength light (560 nm), makes imaging approximately five times safer than using short-wavelength light (500 nm) used to excite green fluorescent calcium indicators such as GCaMP6s. Red fluorescent indicators also provide alternative wavelength imaging regimes to overcome cross talk with the sensitivities of intrinsic photoreceptors and blue light-activated channelrhodopsins. Here we evaluate jRGECO1a for in vivo functional adaptive optics imaging of retinal neurons using single-photon excitation in mice. We find that jRGECO1a provides similar fidelity as the established green indicator GCaMP6s.

摘要

荧光钙指示剂的自适应光学视网膜成像是一种微创方法,可用于长时间研究视网膜生理学。它具有发现新的视网膜回路、跟踪视网膜疾病动物模型中的视网膜功能以及评估视力恢复疗法的潜力。我们之前使用绿色荧光钙指示剂展示了活眼中视网膜神经元的功能自适应光学成像;然而,绿色荧光指示剂的使用带来了一些挑战,这些挑战源于它们是由短波长光激发的。使用红色荧光钙指示剂,如 jRGECO1a,其被更长波长的光(约 560nm)激发,与用于激发绿色荧光钙指示剂(如 GCaMP6s)的短波长光(约 500nm)相比,成像的安全性大约提高了五倍。红色荧光指示剂还提供了替代波长成像模式,可以克服与内在光感受器的灵敏度和蓝光激活通道蛋白的串扰。在这里,我们在小鼠中使用单光子激发评估 jRGECO1a 在体内功能性自适应光学视网膜神经元成像中的应用。我们发现 jRGECO1a 提供的保真度与既定的绿色指示剂 GCaMP6s 相似。

相似文献

1
In Vivo Functional Imaging of Retinal Neurons Using Red and Green Fluorescent Calcium Indicators.
Adv Exp Med Biol. 2018;1074:135-144. doi: 10.1007/978-3-319-75402-4_17.
2
Sensitive red protein calcium indicators for imaging neural activity.
Elife. 2016 Mar 24;5:e12727. doi: 10.7554/eLife.12727.
3
New red-fluorescent calcium indicators for optogenetics, photoactivation and multi-color imaging.
Biochim Biophys Acta. 2014 Oct;1843(10):2284-306. doi: 10.1016/j.bbamcr.2014.03.010. Epub 2014 Mar 27.
4
The need for calcium imaging in nonhuman primates: New motor neuroscience and brain-machine interfaces.
Exp Neurol. 2017 Jan;287(Pt 4):437-451. doi: 10.1016/j.expneurol.2016.08.003. Epub 2016 Aug 7.
5
Thy1 transgenic mice expressing the red fluorescent calcium indicator jRGECO1a for neuronal population imaging in vivo.
PLoS One. 2018 Oct 11;13(10):e0205444. doi: 10.1371/journal.pone.0205444. eCollection 2018.
7
Near-Infrared Fluorescent Proteins: Multiplexing and Optogenetics across Scales.
Trends Biotechnol. 2018 Dec;36(12):1230-1243. doi: 10.1016/j.tibtech.2018.06.011. Epub 2018 Jul 23.
8
Direct imaging of ER calcium with targeted-esterase induced dye loading (TED).
J Vis Exp. 2013 May 7(75):e50317. doi: 10.3791/50317.
9
A general strategy to red-shift green fluorescent protein-based biosensors.
Nat Chem Biol. 2020 Dec;16(12):1434-1439. doi: 10.1038/s41589-020-0641-7. Epub 2020 Sep 14.
10
Characterization of Fluorescent Proteins for Three- and Four-Color Live-Cell Imaging in S. cerevisiae.
PLoS One. 2016 Jan 4;11(1):e0146120. doi: 10.1371/journal.pone.0146120. eCollection 2016.

引用本文的文献

1
IPSC-Derived Human Neurons with GCaMP6s Expression Allow In Vitro Study of Neurophysiological Responses to Neurochemicals.
Neurochem Res. 2022 Apr;47(4):952-966. doi: 10.1007/s11064-021-03497-6. Epub 2021 Dec 2.
2
Hybrid FPGA-CPU pupil tracker.
Biomed Opt Express. 2021 Sep 22;12(10):6496-6513. doi: 10.1364/BOE.433766. eCollection 2021 Oct 1.

本文引用的文献

1
Spectral Dependence of Light Exposure on Retinal Pigment Epithelium Disruption in Living Primate Retina.
Invest Ophthalmol Vis Sci. 2024 Feb 1;65(2):43. doi: 10.1167/iovs.65.2.43.
2
Sensitive red protein calcium indicators for imaging neural activity.
Elife. 2016 Mar 24;5:e12727. doi: 10.7554/eLife.12727.
3
Restoration of the majority of the visual spectrum by using modified Volvox channelrhodopsin-1.
Mol Ther. 2014 Aug;22(8):1434-1440. doi: 10.1038/mt.2014.81. Epub 2014 May 13.
4
Imaging light responses of foveal ganglion cells in the living macaque eye.
J Neurosci. 2014 May 7;34(19):6596-605. doi: 10.1523/JNEUROSCI.4438-13.2014.
5
Independent optical excitation of distinct neural populations.
Nat Methods. 2014 Mar;11(3):338-46. doi: 10.1038/nmeth.2836. Epub 2014 Feb 9.
6
ReaChR: a red-shifted variant of channelrhodopsin enables deep transcranial optogenetic excitation.
Nat Neurosci. 2013 Oct;16(10):1499-508. doi: 10.1038/nn.3502. Epub 2013 Sep 1.
7
Ultrasensitive fluorescent proteins for imaging neuronal activity.
Nature. 2013 Jul 18;499(7458):295-300. doi: 10.1038/nature12354.
8
Imaging light responses of retinal ganglion cells in the living mouse eye.
J Neurophysiol. 2013 May;109(9):2415-21. doi: 10.1152/jn.01043.2012. Epub 2013 Feb 13.
9
Adaptive optics retinal imaging in the living mouse eye.
Biomed Opt Express. 2012 Apr 1;3(4):715-34. doi: 10.1364/BOE.3.000715. Epub 2012 Mar 15.
10
The susceptibility of the retina to photochemical damage from visible light.
Prog Retin Eye Res. 2012 Jan;31(1):28-42. doi: 10.1016/j.preteyeres.2011.11.001. Epub 2011 Nov 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验