Nichols Eva M, Derrick Jeffrey S, Nistanaki Sepand K, Smith Peter T, Chang Christopher J
Department of Chemistry , University of California , Berkeley , CA 94720 , USA . Email:
Chemical Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , CA 94720 , USA.
Chem Sci. 2018 Feb 21;9(11):2952-2960. doi: 10.1039/c7sc04682k. eCollection 2018 Mar 21.
The development of catalysts for electrochemical reduction of carbon dioxide offers an attractive approach to transforming this greenhouse gas into value-added carbon products with sustainable energy input. Inspired by natural bioinorganic systems that feature precisely positioned hydrogen-bond donors in the secondary coordination sphere to direct chemical transformations occurring at redox-active metal centers, we now report the design, synthesis, and characterization of a series of iron tetraphenylporphyrin () derivatives bearing amide pendants at various positions at the periphery of the metal core. Proper positioning of the amide pendants greatly affects the electrocatalytic activity for carbon dioxide reduction to carbon monoxide. In particular, derivatives bearing proximal and distal amide pendants on the position of the phenyl ring exhibit significantly larger turnover frequencies (TOF) compared to the analogous -functionalized amide isomers or unfunctionalized . Analysis of TOF as a function of catalyst standard reduction potential enables first-sphere electronic effects to be disentangled from second-sphere through-space interactions, suggesting that the -functionalized porphyrins can utilize the latter second-sphere property to promote CO reduction. Indeed, the distally-functionalized -amide isomer shows a significantly larger through-space interaction than its proximal -amide analogue. These data establish that proper positioning of secondary coordination sphere groups is an effective design element for breaking electronic scaling relationships that are often observed in electrochemical CO reduction.
用于二氧化碳电化学还原的催化剂的开发为通过可持续能源输入将这种温室气体转化为增值碳产品提供了一种有吸引力的方法。受天然生物无机系统的启发,这些系统在二级配位球中具有精确定位的氢键供体,以指导在氧化还原活性金属中心发生的化学转化,我们现在报告了一系列在金属核外围不同位置带有酰胺侧链的铁四苯基卟啉()衍生物的设计、合成和表征。酰胺侧链的正确定位极大地影响了二氧化碳还原为一氧化碳的电催化活性。特别是,在苯环位置带有近端和远端酰胺侧链的衍生物与类似的官能化酰胺异构体或未官能化的相比,表现出明显更大的周转频率(TOF)。将TOF作为催化剂标准还原电位的函数进行分析,可以将第一配位层电子效应与第二配位层空间相互作用区分开来,这表明官能化的卟啉可以利用后者的第二配位层性质来促进CO还原。事实上,远端官能化的酰胺异构体显示出比其近端酰胺类似物明显更大的空间相互作用。这些数据表明,二级配位球基团的正确定位是打破电化学CO还原中经常观察到的电子标度关系的有效设计要素。