Kim Youngsoo, Smith Jeremy G, Jain Prashant K
Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL, USA.
Department of Physics, University of Illinois Urbana-Champaign, Urbana, IL, USA.
Nat Chem. 2018 Jul;10(7):763-769. doi: 10.1038/s41557-018-0054-3. Epub 2018 May 7.
Multi-electron redox reactions, although central to artificial photosynthesis, are kinetically sluggish. Amidst the search for synthetic catalysts for such processes, plasmonic nanoparticles have been found to catalyse multi-electron reduction of CO under visible light. This example motivates the need for a general, insight-driven framework for plasmonic catalysis of such multi-electron chemistry. Here, we elucidate the principles underlying the extraction of multiple redox equivalents from a plasmonic photocatalyst. We measure the kinetics of electron harvesting from a gold nanoparticle photocatalyst as a function of photon flux. Our measurements, supported by theoretical modelling, reveal a regime where two-electron transfer from the excited gold nanoparticle becomes prevalent. Multiple electron harvesting becomes possible under continuous-wave, visible-light excitation of moderate intensity due to strong interband transitions in gold and electron-hole separation accomplished using a hole scavenger. These insights will help expand the utility of plasmonic photocatalysis beyond CO reduction to other challenging multi-electron, multi-proton transformations such as N fixation.
多电子氧化还原反应虽然是人工光合作用的核心,但在动力学上较为缓慢。在寻找此类过程的合成催化剂时,人们发现等离子体纳米颗粒能够在可见光下催化一氧化碳的多电子还原。这个例子促使人们需要一个通用的、基于深入理解的框架来实现此类多电子化学反应的等离子体催化。在这里,我们阐明了从等离子体光催化剂中提取多个氧化还原当量的基本原理。我们测量了从金纳米颗粒光催化剂中获取电子的动力学作为光子通量的函数。我们的测量结果在理论模型的支持下,揭示了一种情况,即从激发的金纳米颗粒进行双电子转移变得普遍。由于金中的强带间跃迁以及使用空穴清除剂实现的电子 - 空穴分离,在中等强度的连续波可见光激发下,多电子获取成为可能。这些见解将有助于扩大等离子体光催化的应用范围,从一氧化碳还原扩展到其他具有挑战性的多电子、多质子转化,如氮固定。