School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an 710072, China.
Sensors (Basel). 2018 May 8;18(5):1476. doi: 10.3390/s18051476.
When sensor position errors exist, the performance of recently proposed interference-plus-noise covariance matrix (INCM)-based adaptive beamformers may be severely degraded. In this paper, we propose a weighted subspace fitting-based INCM reconstruction algorithm to overcome sensor displacement for linear arrays. By estimating the rough signal directions, we construct a novel possible mismatched steering vector (SV) set. We analyze the proximity of the signal subspace from the sample covariance matrix (SCM) and the space spanned by the possible mismatched SV set. After solving an iterative optimization problem, we reconstruct the INCM using the estimated sensor position errors. Then we estimate the SV of the desired signal by solving an optimization problem with the reconstructed INCM. The main advantage of the proposed algorithm is its robustness against SV mismatches dominated by unknown sensor position errors. Numerical examples show that even if the position errors are up to half of the assumed sensor spacing, the output signal-to-interference-plus-noise ratio is only reduced by 4 dB. Beam patterns plotted using experiment data show that the interference suppression capability of the proposed beamformer outperforms other tested beamformers.
当传感器位置存在误差时,最近提出的基于干扰加噪声协方差矩阵 (INCM) 的自适应波束形成器的性能可能会严重下降。在本文中,我们提出了一种基于加权子空间拟合的 INCM 重建算法,以克服线性阵列的传感器位移。通过估计粗略的信号方向,我们构建了一个新的可能不匹配的导向矢量 (SV) 集。我们从样本协方差矩阵 (SCM) 和可能不匹配的 SV 集所张成的空间分析信号子空间的接近程度。在解决一个迭代优化问题后,我们使用估计的传感器位置误差来重建 INCM。然后,我们通过求解使用重建的 INCM 的优化问题来估计期望信号的 SV。所提出算法的主要优点是它对由未知传感器位置误差主导的 SV 失配具有鲁棒性。数值示例表明,即使位置误差达到假设传感器间距的一半,输出信干噪比也仅降低 4 dB。使用实验数据绘制的波束图表明,所提出的波束形成器的干扰抑制能力优于其他测试的波束形成器。