Suppr超能文献

在含氧光合作用生物中表达对氧气不稳定的氮酶。

Functional expression of an oxygen-labile nitrogenase in an oxygenic photosynthetic organism.

机构信息

Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601, Japan.

School of Agricultural Sciences, Nagoya University, Nagoya, 464-8601, Japan.

出版信息

Sci Rep. 2018 May 9;8(1):7380. doi: 10.1038/s41598-018-25396-7.

Abstract

Transfer of nitrogen fixation ability to plants, especially crops, is a promising approach to mitigate dependence on chemical nitrogen fertilizer and alleviate environmental pollution caused by nitrogen fertilizer run-off. However, the need to transfer a large number of nitrogen fixation (nif) genes and the extreme vulnerability of nitrogenase to oxygen constitute major obstacles for transfer of nitrogen-fixing ability to plants. Here we demonstrate functional expression of a cyanobacterial nitrogenase in the non-diazotrophic cyanobacterium Synechocystis sp. PCC 6803 (Synechocystis 6803). A 20.8-kb chromosomal fragment containing 25 nif and nif-related genes of the diazotrophic cyanobacterium Leptolyngbya boryana was integrated into a neutral genome site of Synechocystis 6803 by five-step homologous recombination together with the cnfR gene encoding the transcriptional activator of the nif genes to isolate CN1. In addition, two other transformants CN2 and CN3 carrying additional one and four genes, respectively, were isolated from CN1. Low but significant nitrogenase activity was detected in all transformants. This is the first example of nitrogenase activity detected in non-diazotrophic photosynthetic organisms. These strains provide valuable platforms to investigate unknown factors that enable nitrogen-fixing growth of non-diazotrophic photosynthetic organisms, including plants.

摘要

将固氮能力转移到植物,特别是作物中,是减少对化学氮肥依赖和缓解氮肥流失造成的环境污染的一种很有前途的方法。然而,将大量固氮(nif)基因转移和氮酶对氧气的极端脆弱性构成了将固氮能力转移到植物的主要障碍。在这里,我们展示了在非固氮蓝藻集胞藻 PCC 6803(集胞藻 6803)中功能性表达蓝藻氮酶。含有固氮蓝藻鱼腥藻 25 个 nif 和 nif 相关基因的 20.8kb 染色体片段与编码 nif 基因转录激活子的 cnfR 基因一起通过五步同源重组整合到集胞藻 6803 的中性基因组位点,以分离出 CN1。此外,还从 CN1 中分离出另外携带一个和四个基因的另外两个转化体 CN2 和 CN3。所有转化体中均检测到低但显著的氮酶活性。这是首次在非固氮光合生物中检测到氮酶活性。这些菌株为研究使非固氮光合生物(包括植物)能够进行固氮生长的未知因素提供了有价值的平台。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6394/5943405/4e5522814257/41598_2018_25396_Fig1_HTML.jpg

相似文献

1
Functional expression of an oxygen-labile nitrogenase in an oxygenic photosynthetic organism.
Sci Rep. 2018 May 9;8(1):7380. doi: 10.1038/s41598-018-25396-7.
2
Engineering Nitrogen Fixation Activity in an Oxygenic Phototroph.
mBio. 2018 Jun 5;9(3):e01029-18. doi: 10.1128/mBio.01029-18.
5
Transcriptional regulators ChlR and CnfR are essential for diazotrophic growth in nonheterocystous cyanobacteria.
Proc Natl Acad Sci U S A. 2014 May 6;111(18):6762-7. doi: 10.1073/pnas.1323570111. Epub 2014 Apr 21.
6
In vivo transposon tagging in the nonheterocystous nitrogen-fixing cyanobacterium Leptolyngbya boryana.
FEBS Lett. 2018 May;592(10):1634-1642. doi: 10.1002/1873-3468.13079. Epub 2018 May 14.
7
Opening the door to nitrogen fixation in oxygenic phototrophs.
Trends Biotechnol. 2023 Mar;41(3):283-285. doi: 10.1016/j.tibtech.2023.01.005. Epub 2023 Jan 14.
9
Challenges to develop nitrogen-fixing cereals by direct nif-gene transfer.
Plant Sci. 2014 Aug;225:130-7. doi: 10.1016/j.plantsci.2014.06.003. Epub 2014 Jun 11.

引用本文的文献

1
Investigation of the nitrogenase cluster in : a blueprint for engineering nitrogen-fixing photoautotrophs.
mBio. 2025 Apr 9;16(4):e0405224. doi: 10.1128/mbio.04052-24. Epub 2025 Feb 25.
2
Heterologous synthesis of the complex homometallic cores of nitrogenase P- and M-clusters in .
Proc Natl Acad Sci U S A. 2023 Oct 31;120(44):e2314788120. doi: 10.1073/pnas.2314788120. Epub 2023 Oct 23.
3
The Molecular Toolset and Techniques Required to Build Cyanobacterial Cell Factories.
Adv Biochem Eng Biotechnol. 2023;183:65-103. doi: 10.1007/10_2022_210.
4
5
Cross-Activation of Two Nitrogenase Gene Clusters by CnfR1 or CnfR2 in the Cyanobacterium Anabaena variabilis.
Microbiol Spectr. 2021 Oct 31;9(2):e0106021. doi: 10.1128/Spectrum.01060-21. Epub 2021 Oct 6.
6
Microalgal culture in animal cell waste medium for sustainable 'cultured food' production.
Arch Microbiol. 2021 Nov;203(9):5525-5532. doi: 10.1007/s00203-021-02509-x. Epub 2021 Aug 23.
7
Engineering rhizobacteria for sustainable agriculture.
ISME J. 2021 Apr;15(4):949-964. doi: 10.1038/s41396-020-00835-4. Epub 2020 Nov 23.
8
Emerging Species and Genome Editing Tools: Future Prospects in Cyanobacterial Synthetic Biology.
Microorganisms. 2019 Sep 29;7(10):409. doi: 10.3390/microorganisms7100409.
10
Membrane-Located Expression of Thioesterase From Enhances Free Fatty Acid Production With Decreased Toxicity in sp. PCC6803.
Front Microbiol. 2018 Nov 27;9:2842. doi: 10.3389/fmicb.2018.02842. eCollection 2018.

本文引用的文献

1
Removal of the product from the culture medium strongly enhances free fatty acid production by genetically engineered .
Biotechnol Biofuels. 2017 May 31;10:141. doi: 10.1186/s13068-017-0831-z. eCollection 2017.
3
Expression of 16 Nitrogenase Proteins within the Plant Mitochondrial Matrix.
Front Plant Sci. 2017 Mar 3;8:287. doi: 10.3389/fpls.2017.00287. eCollection 2017.
4
Formation of Nitrogenase NifDK Tetramers in the Mitochondria of Saccharomyces cerevisiae.
ACS Synth Biol. 2017 Jun 16;6(6):1043-1055. doi: 10.1021/acssynbio.6b00371. Epub 2017 Mar 3.
5
Modular electron-transport chains from eukaryotic organelles function to support nitrogenase activity.
Proc Natl Acad Sci U S A. 2017 Mar 21;114(12):E2460-E2465. doi: 10.1073/pnas.1620058114. Epub 2017 Feb 13.
6
The nitrogen fix.
Science. 2016 Sep 16;353(6305):1225-7. doi: 10.1126/science.353.6305.1225.
7
Expression of Active Subunit of Nitrogenase via Integration into Plant Organelle Genome.
PLoS One. 2016 Aug 16;11(8):e0160951. doi: 10.1371/journal.pone.0160951. eCollection 2016.
10
Biosynthesis of the Metalloclusters of Nitrogenases.
Annu Rev Biochem. 2016 Jun 2;85:455-83. doi: 10.1146/annurev-biochem-060614-034108. Epub 2016 Feb 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验