Suppr超能文献

氢原子隧穿极高势垒;低温 Ar、Ne、H 和 D 基质中脲孤立分子中硫醇→硫酮的自发转化。

Hydrogen-atom tunneling through a very high barrier; spontaneous thiol → thione conversion in thiourea isolated in low-temperature Ar, Ne, H and D matrices.

机构信息

Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland.

出版信息

Phys Chem Chem Phys. 2018 May 23;20(20):13994-14002. doi: 10.1039/c8cp01703d.

Abstract

Spontaneous thiol → thione hydrogen-atom transfer has been investigated for molecules of thiourea trapped in Ar, Ne, normal-H2 (n-H2) and normal-D2 (n-D2) low-temperature matrices. The most stable thione isomer was the only form of the compound present in the matrices after their deposition. According to MP2/6-311++G(2d,p) calculations, the thiol tautomer should be higher in energy by 62.5 kJ mol-1. This less stable thiol form of the compound was photochemically generated in a thione → thiol process, occurring upon UV irradiation of the matrix. Subsequently, a very slow spontaneous conversion of the thiol tautomer into the thione form was observed for the molecules isolated in Ar, Ne, n-H2 and n-D2 matrices kept at 3.5 K and in the dark. Since the thiol → thione transformation in thiourea is a process involving the dissociation of a chemical bond, the barrier for this hydrogen-atom transfer is very high (104-181 kJ mol-1). Crossing such a high potential-energy barrier at a temperature as low as 3.5 K, is possible only by hydrogen-atom tunneling. The experimentally measured time constants of this tunneling process: 52 h (Ar), 76 h (Ne), 94 h (n-H2) and 94 h (n-D2), do not differ much from one another. Hence, the dependence of the tunneling rate on the matrix environment is not drastic. The progress of the thiol → thione conversion was also monitored for Ar matrices at different temperature: 3.5 K, 9 K and 15 K. For this temperature range, the experiments revealed no detectable temperature dependence of the rate of the tunneling process.

摘要

已经研究了捕获在 Ar、Ne、正常-H2(n-H2)和正常-D2(n-D2)低温基质中的硫脲分子的自发硫醇→硫酮氢原子转移。最稳定的硫酮异构体是该化合物在沉积后存在于基质中的唯一形式。根据 MP2/6-311++G(2d,p)计算,硫醇互变异构体的能量应该高 62.5 kJ mol-1。该化合物的这种不太稳定的硫醇形式通过硫酮→硫醇过程光化学产生,在基质的 UV 照射下发生。随后,在 Ar、Ne、n-H2 和 n-D2 基质中分离的分子中观察到硫醇互变异构体非常缓慢地自发转化为硫酮形式,这些分子在 3.5 K 且黑暗条件下保存。由于硫脲中的硫醇→硫酮转化是涉及化学键离解的过程,因此这种氢原子转移的势垒非常高(104-181 kJ mol-1)。在低至 3.5 K 的温度下,通过氢原子隧道穿过如此高的势能势垒是可能的。该隧道过程的实验测量的时间常数为:52 h(Ar)、76 h(Ne)、94 h(n-H2)和 94 h(n-D2),彼此之间没有太大差异。因此,隧道速率对基质环境的依赖性不剧烈。还在不同温度下(3.5 K、9 K 和 15 K)监测了 Ar 基质中硫醇→硫酮转化的进展。对于该温度范围,实验未发现隧道过程速率的可检测温度依赖性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验