文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

使用禁忌搜索和路径重连的图绘制。

Graph drawing using tabu search coupled with path relinking.

机构信息

School of Computing, University of Kent, Canterbury, Kent, United Kingdom.

Computer Science Department, Gulf University for Science and Technology, Hawally, Kuwait.

出版信息

PLoS One. 2018 May 10;13(5):e0197103. doi: 10.1371/journal.pone.0197103. eCollection 2018.


DOI:10.1371/journal.pone.0197103
PMID:29746576
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC5945037/
Abstract

Graph drawing, or the automatic layout of graphs, is a challenging problem. There are several search based methods for graph drawing which are based on optimizing an objective function which is formed from a weighted sum of multiple criteria. In this paper, we propose a new neighbourhood search method which uses a tabu search coupled with path relinking to optimize such objective functions for general graph layouts with undirected straight lines. To our knowledge, before our work, neither of these methods have been previously used in general multi-criteria graph drawing. Tabu search uses a memory list to speed up searching by avoiding previously tested solutions, while the path relinking method generates new solutions by exploring paths that connect high quality solutions. We use path relinking periodically within the tabu search procedure to speed up the identification of good solutions. We have evaluated our new method against the commonly used neighbourhood search optimization techniques: hill climbing and simulated annealing. Our evaluation examines the quality of the graph layout (objective function's value) and the speed of layout in terms of the number of evaluated solutions required to draw a graph. We also examine the relative scalability of each method. Our experimental results were applied to both random graphs and a real-world dataset. We show that our method outperforms both hill climbing and simulated annealing by producing a better layout in a lower number of evaluated solutions. In addition, we demonstrate that our method has greater scalability as it can layout larger graphs than the state-of-the-art neighbourhood search methods. Finally, we show that similar results can be produced in a real world setting by testing our method against a standard public graph dataset.

摘要

图形绘制,或自动布局图形,是一个具有挑战性的问题。有几种基于搜索的图形绘制方法,这些方法基于优化由多个标准的加权和形成的目标函数。在本文中,我们提出了一种新的邻域搜索方法,该方法使用禁忌搜索和路径重连来优化具有无向直线的一般图形布局的此类目标函数。据我们所知,在我们的工作之前,这些方法都没有以前在一般多标准图形绘制中使用过。禁忌搜索使用一个记忆列表来通过避免已经测试过的解决方案来加速搜索,而路径重连方法通过探索连接高质量解决方案的路径来生成新的解决方案。我们在禁忌搜索过程中定期使用路径重连来加快识别好的解决方案。我们已经将我们的新方法与常用的邻域搜索优化技术(爬山法和模拟退火法)进行了评估。我们的评估从图形布局的质量(目标函数的值)以及绘制图形所需评估的解决方案数量这两个方面来评估布局的速度。我们还检查了每种方法的相对可扩展性。我们的实验结果应用于随机图和真实数据集。我们表明,我们的方法通过在较少的评估解决方案中产生更好的布局,优于爬山法和模拟退火法。此外,我们证明我们的方法具有更大的可扩展性,因为它可以布局比最先进的邻域搜索方法更大的图形。最后,我们通过在标准公共图形数据集上测试我们的方法,证明了在实际环境中也可以产生类似的结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2610/5945037/77388f8f67a2/pone.0197103.g032.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2610/5945037/6fd644958f44/pone.0197103.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2610/5945037/1613d5fae078/pone.0197103.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2610/5945037/a33884a7769b/pone.0197103.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2610/5945037/07b626e9a857/pone.0197103.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2610/5945037/c0d0357fef32/pone.0197103.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2610/5945037/e9e9e86ba653/pone.0197103.g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2610/5945037/0f174a6fb540/pone.0197103.g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2610/5945037/2a5147acdaf4/pone.0197103.g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2610/5945037/b917a3ce0d2d/pone.0197103.g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2610/5945037/773c39b9828b/pone.0197103.g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2610/5945037/0e5978901486/pone.0197103.g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2610/5945037/e56acbc110e4/pone.0197103.g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2610/5945037/c298ad683314/pone.0197103.g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2610/5945037/64187e3bef2c/pone.0197103.g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2610/5945037/70c4363a2631/pone.0197103.g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2610/5945037/bd812e670a83/pone.0197103.g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2610/5945037/93a7b14c795a/pone.0197103.g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2610/5945037/c166fc09fe1d/pone.0197103.g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2610/5945037/a5a39f0e9c2c/pone.0197103.g019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2610/5945037/c9be3fb99529/pone.0197103.g020.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2610/5945037/114163d48851/pone.0197103.g021.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2610/5945037/c70c98b94ba5/pone.0197103.g022.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2610/5945037/f1c7220fd806/pone.0197103.g023.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2610/5945037/3850a5f701f1/pone.0197103.g024.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2610/5945037/f15a70a73498/pone.0197103.g025.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2610/5945037/77145c3e6e2b/pone.0197103.g026.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2610/5945037/64e9f803201d/pone.0197103.g027.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2610/5945037/f4f692ce277e/pone.0197103.g028.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2610/5945037/1d94e997b835/pone.0197103.g029.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2610/5945037/4347262ecae4/pone.0197103.g030.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2610/5945037/9487ea065462/pone.0197103.g031.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2610/5945037/77388f8f67a2/pone.0197103.g032.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2610/5945037/6fd644958f44/pone.0197103.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2610/5945037/1613d5fae078/pone.0197103.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2610/5945037/a33884a7769b/pone.0197103.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2610/5945037/07b626e9a857/pone.0197103.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2610/5945037/c0d0357fef32/pone.0197103.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2610/5945037/e9e9e86ba653/pone.0197103.g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2610/5945037/0f174a6fb540/pone.0197103.g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2610/5945037/2a5147acdaf4/pone.0197103.g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2610/5945037/b917a3ce0d2d/pone.0197103.g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2610/5945037/773c39b9828b/pone.0197103.g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2610/5945037/0e5978901486/pone.0197103.g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2610/5945037/e56acbc110e4/pone.0197103.g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2610/5945037/c298ad683314/pone.0197103.g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2610/5945037/64187e3bef2c/pone.0197103.g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2610/5945037/70c4363a2631/pone.0197103.g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2610/5945037/bd812e670a83/pone.0197103.g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2610/5945037/93a7b14c795a/pone.0197103.g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2610/5945037/c166fc09fe1d/pone.0197103.g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2610/5945037/a5a39f0e9c2c/pone.0197103.g019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2610/5945037/c9be3fb99529/pone.0197103.g020.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2610/5945037/114163d48851/pone.0197103.g021.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2610/5945037/c70c98b94ba5/pone.0197103.g022.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2610/5945037/f1c7220fd806/pone.0197103.g023.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2610/5945037/3850a5f701f1/pone.0197103.g024.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2610/5945037/f15a70a73498/pone.0197103.g025.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2610/5945037/77145c3e6e2b/pone.0197103.g026.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2610/5945037/64e9f803201d/pone.0197103.g027.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2610/5945037/f4f692ce277e/pone.0197103.g028.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2610/5945037/1d94e997b835/pone.0197103.g029.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2610/5945037/4347262ecae4/pone.0197103.g030.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2610/5945037/9487ea065462/pone.0197103.g031.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2610/5945037/77388f8f67a2/pone.0197103.g032.jpg

相似文献

[1]
Graph drawing using tabu search coupled with path relinking.

PLoS One. 2018-5-10

[2]
Graph drawing using Jaya.

PLoS One. 2023

[3]
An impatient evolutionary algorithm with probabilistic tabu search for unified solution of some NP-hard problems in graph and set theory via clique finding.

IEEE Trans Syst Man Cybern B Cybern. 2008-6

[4]
An iterated tabu search approach for the clique partitioning problem.

ScientificWorldJournal. 2014-3-4

[5]
Heuristic-based tabu search algorithm for folding two-dimensional AB off-lattice model proteins.

Comput Biol Chem. 2013-9-8

[6]
DeepGD: A Deep Learning Framework for Graph Drawing Using GNN.

IEEE Comput Graph Appl. 2021

[7]
fCoSE: A Fast Compound Graph Layout Algorithm with Constraint Support.

IEEE Trans Vis Comput Graph. 2022-12

[8]
Genetic algorithms, path relinking, and the flowshop sequencing problem.

Evol Comput. 1998

[9]
DRGraph: An Efficient Graph Layout Algorithm for Large-scale Graphs by Dimensionality Reduction.

IEEE Trans Vis Comput Graph. 2021-2

[10]
Hybrid modified ant system with sweep algorithm and path relinking for the capacitated vehicle routing problem.

Heliyon. 2021-9-21

引用本文的文献

[1]
Graph drawing using Jaya.

PLoS One. 2023

[2]
Euler diagrams drawn with ellipses area-proportionally (Edeap).

BMC Bioinformatics. 2021-4-26

本文引用的文献

[1]
ForceAtlas2, a continuous graph layout algorithm for handy network visualization designed for the Gephi software.

PLoS One. 2014-6-10

[2]
A maxent-stress model for graph layout.

IEEE Trans Vis Comput Graph. 2013-6

[3]
The structure of the nervous system of the nematode Caenorhabditis elegans.

Philos Trans R Soc Lond B Biol Sci. 1986-11-12

[4]
Automatic metro map layout using multicriteria optimization.

IEEE Trans Vis Comput Graph. 2011-1

[5]
Finding community structure in networks using the eigenvectors of matrices.

Phys Rev E Stat Nonlin Soft Matter Phys. 2006-9

[6]
Community structure in social and biological networks.

Proc Natl Acad Sci U S A. 2002-6-11

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索