Departamento de Matemática y Ciencias, Universidad de San Andrés, 1644 Buenos Aires, Argentina, and CONICET, Argentina.
Phys Rev E. 2018 Apr;97(4-1):042123. doi: 10.1103/PhysRevE.97.042123.
The Bak-Sneppen (BS) model is a very simple model that exhibits all the richness of self-organized criticality theory. At the thermodynamic limit, the BS model converges to a situation where all particles have a fitness that is uniformly distributed between a critical value p_{c} and 1. The p_{c} value is unknown, as are the variables that influence and determine this value. Here we study the BS model in the case in which the lowest fitness particle interacts with an arbitrary even number of m nearest neighbors. We show that p_{c} verifies a simple local equilibrium relation. Based on this relation, we can determine bounds for p_{c} of the BS model and exact results for some BS-like models. Finally, we show how transformations of the original BS model can be done without altering the model's complex dynamics.
巴克-斯尼彭(BS)模型是一个非常简单的模型,它展示了自组织临界性理论的所有丰富性。在热力学极限下,BS 模型收敛到所有粒子的适应性在一个临界值 pc 和 1 之间均匀分布的情况。pc 值是未知的,影响和决定这个值的变量也是未知的。在这里,我们研究了 BS 模型的情况,其中适应性最低的粒子与任意偶数个 m 个最近邻居相互作用。我们表明,pc 满足一个简单的局部平衡关系。基于这个关系,我们可以确定 BS 模型的 pc 界限和一些类似 BS 的模型的精确结果。最后,我们展示了如何在不改变模型复杂动力学的情况下对原始 BS 模型进行变换。