Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University , Nagoya , Japan.
Department of Molecular Neurobiology, Graduate School of Medical Sciences, Nagoya City University , Nagoya , Japan.
Am J Physiol Cell Physiol. 2018 Aug 1;315(2):C202-C213. doi: 10.1152/ajpcell.00154.2017. Epub 2018 May 16.
Brain capillary endothelial cells (BCECs) play a central role in maintenance of blood-brain barrier (BBB) function and, therefore, are essential for central nervous system homeostasis and integrity. Although brain ischemia damages BCECs and causes disruption of BBB, the related influence of hypoxia on BCECs is not well understood. Hypoxic stress can upregulate functional expression of specific K currents in endothelial cells, e.g., K2.1 channels without any alterations in the mRNA level, in t-BBEC117, a cell line derived from bovine BCECs. The hyperpolarization of membrane potential due to K2.1 channel upregulation significantly facilitates cell proliferation. In the present study, the mechanisms underlying the hypoxia-induced K2.1 upregulation was examined. We emphasize the involvement of dynamin2, a protein known to be involved in a number of surface expression pathways. Hypoxic culture upregulated dynamin2 expression in t-BBEC117 cells. The inhibition of dynamin2 by Dynasore canceled hypoxia-induced upregulation of K2.1 currents by reducing surface expression. On the contrary, K2.1 currents and proteins in t-BBEC117 cultured under normoxia were increased by overexpression of dynamin2, but not by dominant-negative dynamin2. Molecular imaging based on bimolecular fluorescence complementation, double-immunostaining, and coimmunoprecipitation assays revealed that dynamin2 can directly bind to the K2.1 channel. Moreover, hypoxic culture downregulated hypoxic-inducible factor-1α (HIF-1α) expression. Knockdown of HIF-1α increased dynamin2 expression in t-BBEC117 cells, in both normoxic and hypoxic culture conditions. In summary, our results demonstrated that hypoxia downregulates HIF-1α, increases dynamin2 expression, and facilitates K2.1 surface expression, resulting in hyperpolarization of membrane potential and subsequent increase in Ca influx in BCECs.
脑毛细血管内皮细胞 (BCECs) 在维持血脑屏障 (BBB) 功能方面发挥着核心作用,因此对于中枢神经系统的稳态和完整性至关重要。尽管脑缺血会损伤 BCECs 并导致 BBB 破裂,但缺氧对 BCECs 的相关影响尚未得到充分理解。缺氧应激可以上调内皮细胞中特定 K 电流的功能表达,例如,在源自牛 BCECs 的细胞系 t-BBEC117 中,mRNA 水平没有任何变化的情况下,K2.1 通道。由于 K2.1 通道上调导致的膜电位超极化显著促进了细胞增殖。在本研究中,研究了缺氧诱导 K2.1 上调的机制。我们强调了参与许多表面表达途径的蛋白 dynamin2 的参与。缺氧培养上调了 t-BBEC117 细胞中的 dynamin2 表达。Dynasore 通过减少表面表达,抑制 dynamin2 可消除缺氧诱导的 K2.1 电流上调。相反,在常氧培养下,通过过表达 dynamin2 而不是显性负 dynamin2 增加了 t-BBEC117 中的 K2.1 电流和蛋白。基于双分子荧光互补、双免疫染色和共免疫沉淀测定的分子成像显示,dynamin2 可以直接与 K2.1 通道结合。此外,缺氧培养下调缺氧诱导因子-1α (HIF-1α) 的表达。在常氧和缺氧培养条件下,t-BBEC117 细胞中 HIF-1α 的敲低增加了 dynamin2 的表达。总之,我们的结果表明,缺氧下调 HIF-1α,增加 dynamin2 表达,并促进 K2.1 表面表达,导致 BCECs 膜电位超极化和随后 Ca 流入增加。