OHS PET/CT Hamad Medical Corporation, Doha, Qatar.
INSERM UMR 1101 LaTIM UBO, Brest, France.
Med Phys. 2018 Jul;45(7):3043-3051. doi: 10.1002/mp.12982. Epub 2018 Jun 3.
Respiratory motion reduces the sensitivity and specificity of medical images especially in the thoracic and abdominal areas. It may affect applications such as cancer diagnostic imaging and/or radiation therapy (RT). Solutions to this issue include modeling of the respiratory motion in order to optimize both diagnostic and therapeutic protocols. Personalized motion modeling required patient-specific four-dimensional (4D) imaging which in the case of 4D computed tomography (4D CT) acquisition is associated with an increased dose. The goal of this work was to develop a global respiratory motion model capable of relating external patient surface motion to internal structure motion without the need for a patient-specific 4D CT acquisition.
The proposed global model is based on principal component analysis and can be adjusted to a given patient anatomy using only one or two static CT images in conjunction with a respiratory synchronized patient external surface motion. It is based on the relation between the internal motion described using deformation fields obtained by registering 4D CT images and patient surface maps obtained either from optical imaging devices or extracted from CT image-based patient skin segmentation. 4D CT images of six patients were used to generate the global motion model which was validated by adapting it on four different patients having skin segmented surfaces and two other patients having time of flight camera acquired surfaces. The reproducibility of the proposed model was also assessed on two patients with two 4D CT series acquired within 2 weeks of each other.
Profile comparison shows the efficacy of the global respiratory motion model and an improvement while using two CT images in order to adapt the model. This was confirmed by the correlation coefficient with a mean correlation of 0.9 and 0.95 while using one or two CT images respectively and when comparing acquired to model generated 4D CT images. For the four patients with segmented surfaces, expert validation indicates an error of 2.35 ± 0.26 mm compared to 6.07 ± 0.76 mm when using a simple interpolation between full inspiration (FI) and full expiration (FE) CT only; i.e., without specific modeling of the respiratory motion. For the two patients with acquired surfaces, this error was of 2.48 ± 0.18 mm. In terms of reproducibility, model error changes of 0.12 and 0.17 mm were measured for the two patients concerned.
The framework for the derivation of a global respiratory motion model was developed. A single or two static CT images and associated patient surface motion, as a surrogate measure, are only needed to personalize the model. This model accuracy and reproducibility were assessed by comparing acquired vs model generated 4D CT images. Future work will consist of assessing extensively the proposed model for radiotherapy applications.
呼吸运动会降低医学图像的敏感性和特异性,尤其是在胸部和腹部区域。它可能会影响癌症诊断成像和/或放射治疗 (RT) 等应用。解决这个问题的方法包括对呼吸运动进行建模,以便优化诊断和治疗方案。个性化运动建模需要对患者进行特定的四维 (4D) 成像,而在 4D 计算机断层扫描 (4D CT) 采集的情况下,会增加剂量。这项工作的目的是开发一种能够将患者外部表面运动与内部结构运动联系起来的全局呼吸运动模型,而无需进行患者特定的 4D CT 采集。
所提出的全局模型基于主成分分析,可以使用仅一个或两个静态 CT 图像并结合呼吸同步的患者外部表面运动来调整给定患者的解剖结构。它基于使用通过注册 4D CT 图像获得的变形场描述的内部运动与从光学成像设备获得的患者表面图或从基于 CT 图像的患者皮肤分割中提取的患者表面图之间的关系。使用六个患者的 4D CT 图像生成全局运动模型,并通过在具有分割表面的四个不同患者和两个具有飞行时间相机采集表面的其他两个患者上调整该模型来验证其有效性。还在两个在两周内采集两次 4D CT 系列的患者身上评估了所提出模型的可重复性。
轮廓比较显示了全局呼吸运动模型的有效性,并在使用两个 CT 图像以适应模型时有所改进。这通过相关系数得到了证实,当使用一个或两个 CT 图像时,相关系数的平均值分别为 0.9 和 0.95,并且在比较采集到的和生成的 4D CT 图像时也是如此。对于具有分割表面的四个患者,与仅使用全吸气 (FI) 和全呼气 (FE) CT 之间的简单插值(即不进行呼吸运动的特定建模)相比,专家验证表明误差为 2.35±0.26 毫米;即,使用一个或两个静态 CT 图像和相关的患者表面运动作为替代测量方法,即可个性化模型。对于两个具有采集表面的患者,该误差为 2.48±0.18 毫米。在可重复性方面,对两个患者进行了 0.12 和 0.17 毫米的模型误差变化测量。
开发了一种全局呼吸运动模型的推导框架。个性化模型仅需要一个或两个静态 CT 图像和相关的患者表面运动作为替代测量。通过比较采集到的和生成的 4D CT 图像来评估模型的准确性和可重复性。未来的工作将包括广泛评估该模型在放射治疗中的应用。