Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovského nám. 2, 162 06 Praha, Czech Republic.
Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovského nám. 2, 162 06 Praha, Czech Republic.
J Mech Behav Biomed Mater. 2018 Aug;84:108-115. doi: 10.1016/j.jmbbm.2018.05.013. Epub 2018 May 9.
Addition of high-aspect-ratio (AR) nanofillers can markedly influence flow behavior of polymer systems. As a result, application of graphite nanoplatelets (GNP) allows preparation of microfibrillar composites (MFC) based on PCL matrix reinforced with in-situ generated PLA fibrils. This work deals, for the first time, with preparation of analogous melt-drawn fibers. Unlike other blend-based fibers, the spinning and melt drawing leads to structure of deformed inclusions due to unfavorable ratio of rheological parameters of components. Subsequent moderate cold drawing of the system with dissimilar deformability of components causes strengthening with PLA fibrils. Unexpectedly, high velocity and extent of cold drawing leads to structure with low-AR inclusions, similar to the original melt-drawn blend. Extensive fast deformation of the soft PCL matrix does not allow sufficient stress transfer to rigid PLA. In spite of peculiarities found, the GNP-aided melt spinning allows facile preparation of biodegradable biocompatible fibers with wide range of diameters (80-400 µm) and parameters (2.35-18 cN/tex).
添加高纵横比(AR)纳米填料可以显著影响聚合物体系的流动行为。因此,石墨纳米片(GNP)的应用允许在以 PLA 原纤维增强的 PCL 基体上制备基于微纤维复合材料(MFC)。这项工作首次涉及类似的熔融拉伸纤维的制备。与其他基于共混物的纤维不同,由于流变参数比值不利,纺丝和熔融拉伸导致了变形夹杂物的结构。随后对具有不同变形能力的体系进行适度的冷拉伸会导致 PLA 原纤维增强。出乎意料的是,高速和大程度的冷拉伸导致具有低 AR 夹杂物的结构,类似于原始的熔融拉伸共混物。柔软的 PCL 基体的广泛快速变形不允许向刚性 PLA 充分传递应力。尽管发现了这些特点,GNP 辅助的熔融纺丝允许容易地制备具有广泛直径(80-400 µm)和参数(2.35-18 cN/tex)的生物降解生物相容性纤维。