Institute of Metal Physics, Ekaterinburg 620990, Russian Federation and Ural Federal University, Mira 19, Ekaterinburg 620002, Russian Federation.
Racah Institute of Physics, Hebrew University of Jerusalem, Jerusalem 91904, Israel.
Phys Rev E. 2018 Mar;97(3-1):032210. doi: 10.1103/PhysRevE.97.032210.
Controlling the state of a Bose-Einstein condensate driven by a chirped frequency perturbation in a one-dimensional anharmonic trapping potential is discussed. By identifying four characteristic time scales in this chirped-driven problem, three dimensionless parameters P_{1,2,3} are defined describing the driving strength, the anharmonicity of the trapping potential, and the strength of the particles interaction, respectively. As the driving frequency passes the linear resonance in the problem, and depending on the location in the P_{1,2,3} parameter space, the system may exhibit two very different evolutions, i.e., the quantum energy ladder climbing (LC) and the classical autoresonance (AR). These regimes are analyzed both in theory and simulations with the emphasis on the effect of the interaction parameter P_{3}. In particular, the transition thresholds on the driving parameter P_{1} and their width in P_{1} in both the AR and LC regimes are discussed. Different driving protocols are also illustrated, showing efficient control of excitation and deexcitation of the condensate.
在一维非谐囚禁势中,利用啁啾频率微扰驱动玻色-爱因斯坦凝聚体,讨论了其动力学过程。通过在啁啾驱动问题中识别出四个特征时间尺度,定义了三个无量纲参数 P1、P2、P3,分别描述了驱动强度、囚禁势的非谐性以及粒子间相互作用的强度。当驱动频率通过问题中的线性共振时,根据 P1、P2、P3 参数空间中的位置,系统可能表现出两种非常不同的演化,即量子能垒爬升(LC)和经典自共振(AR)。理论和模拟都对这些区域进行了分析,重点讨论了相互作用参数 P3 的影响。特别地,讨论了 AR 和 LC 区域中驱动参数 P1 的跃迁阈值及其在 P1 中的宽度。还展示了不同的驱动方案,有效地控制了凝聚体的激发和去激发。