Department of Biomedical Informatics, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan.
Division of Health Policy and Management, Center for Community Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan.
Int J Med Inform. 2018 Jul;115:114-119. doi: 10.1016/j.ijmedinf.2018.05.002. Epub 2018 May 2.
Regional differences in the adoption of electronic medical records (EMR) are a major problem, yet little is known about these differences internationally. We analyzed regional differences in EMR adoption in Japan and evaluated factors associated with these differences.
This nationwide ecological study used secondary data from all secondary medical service areas (SMSAs) in fiscal years 2008 (n = 348) and 2014 (n = 344). For each SMSA we collected the following information from a Japanese national database: the number of medical facilities that had adopted EMR, the population density, the average per capita income, the number of working doctors per 1000 people, and the proportion of interns to all working doctors. To adjust for medical facility characteristics in each SMSA, such as number of beds, public versus private hospital, and hospital type (psychiatric or other), we estimated the standardized adoption ratio (SAR) for EMR adoption, modeled on the standardized mortality ratio. We calculated Moran's I for the SAR and investigated whether the SAR had spatial autocorrelations. We evaluated the association between the SAR and regional factors with a conditional autoregressive model. We compared these results in 2008 and 2014, for both hospitals and clinics.
While the EMR adoption rate in SMSAs increased, Moran's I of the SAR in hospitals was close to 1 in both 2008 and 2014, and Moran's I of the SAR in clinics increased from 2008 to 2014. For hospitals, there was a significant association between the proportion of interns to all working doctors and the SAR only in 2008. For clinics, average income in the SMSA was positively associated with the SAR, whereas the number of working doctors was negatively associated with the SAR in both 2008 and 2014. Population density was positively associated with the SAR only in 2014.
From 2008 to 2014, EMR adoption in Japan generally increased, but geographical differences did not improve. Regional factors associated with the SAR were different for hospitals than for clinics. Therefore, the government should take different approaches for clinics and hospitals to improve regional differences in EMR adoption, especially in providing financial and technical support.
电子病历(EMR)的采用在地域上存在差异,这是一个主要问题,但国际上对此知之甚少。我们分析了日本 EMR 采用的地域差异,并评估了这些差异的相关因素。
本全国性生态研究使用了 2008 财年(n=348)和 2014 财年(n=344)所有二级医疗服务区(SMSA)的二次数据。对于每个 SMSA,我们从日本国家数据库中收集以下信息:采用 EMR 的医疗机构数量、人口密度、人均收入、每千名医生的工作人数以及实习医生占所有医生的比例。为了调整每个 SMSA 中医疗设施的特征,如床位数量、公立与私立医院以及医院类型(精神病或其他),我们采用标准化死亡率比(SMR)模型,估算了 EMR 采用的标准化采用率(SAR)。我们计算了 SAR 的 Moran's I 值,并调查了 SAR 是否存在空间自相关。我们使用条件自回归模型评估了 SAR 与区域因素之间的关联。我们比较了 2008 年和 2014 年医院和诊所的 SAR 结果。
虽然 SMSA 中的 EMR 采用率有所提高,但 2008 年和 2014 年医院 SAR 的 Moran's I 值均接近 1,而诊所 SAR 的 Moran's I 值则从 2008 年增加到 2014 年。对于医院,只有在 2008 年,实习医生占所有医生的比例与 SAR 之间存在显著关联。对于诊所,SMSA 的平均收入与 SAR 呈正相关,而在 2008 年和 2014 年,医生的工作人数与 SAR 呈负相关。人口密度仅与 2014 年的 SAR 呈正相关。
从 2008 年到 2014 年,日本的 EMR 采用总体上有所增加,但地域差异并未改善。与 SAR 相关的区域因素在医院和诊所之间有所不同。因此,政府应针对诊所和医院采取不同的方法,以改善 EMR 采用的地域差异,特别是在提供财政和技术支持方面。