Suppr超能文献

黑视蛋白视网膜神经节细胞调控小鼠视网膜视锥光感受细胞的分层。

Melanopsin Retinal Ganglion Cells Regulate Cone Photoreceptor Lamination in the Mouse Retina.

机构信息

Cellular Neurobiology Research Unit, Institut de Recherches Cliniques de Montréal, Montréal, QC, Canada; Integrated Program in Neuroscience, McGill University, Montréal, QC, Canada.

Department of Biology, University of Akron, Akron, OH, USA.

出版信息

Cell Rep. 2018 May 22;23(8):2416-2428. doi: 10.1016/j.celrep.2018.04.086.

Abstract

Newborn neurons follow molecular cues to reach their final destination, but whether early life experience influences lamination remains largely unexplored. As light is among the first stimuli to reach the developing nervous system via intrinsically photosensitive retinal ganglion cells (ipRGCs), we asked whether ipRGCs could affect lamination in the developing mouse retina. We show here that ablation of ipRGCs causes cone photoreceptors to mislocalize at different apicobasal positions in the retina. This effect is partly mediated by light-evoked activity in ipRGCs, as dark rearing or silencing of ipRGCs leads a subset of cones to mislocalize. Furthermore, ablation of ipRGCs alters the cone transcriptome and decreases expression of the dopamine receptor D4, while injection of L-DOPA or D4 receptor agonist rescues the displaced cone phenotype observed in dark-reared animals. These results show that early light-mediated activity in ipRGCs influences neuronal lamination and identify ipRGC-elicited dopamine release as a mechanism influencing cone position.

摘要

新生神经元会根据分子线索到达最终目的地,但早期生活经验是否会影响分层仍在很大程度上尚未得到探索。由于光作为最早通过内在光敏视网膜神经节细胞(ipRGCs)到达发育中神经系统的刺激之一,我们想知道 ipRGCs 是否会影响发育中的小鼠视网膜的分层。我们在这里表明,ipRGCs 的消融会导致视锥细胞在视网膜的不同顶底位置发生错误定位。这种效应部分是由 ipRGCs 中的光诱发活动介导的,因为暗饲养或 ipRGCs 的沉默会导致一部分视锥细胞发生错误定位。此外,ipRGCs 的消融会改变视锥细胞的转录组并降低多巴胺受体 D4 的表达,而 L-DOPA 或 D4 受体激动剂的注射可挽救在暗饲养动物中观察到的移位视锥细胞表型。这些结果表明,ipRGCs 中的早期光介导活动会影响神经元的分层,并确定由 ipRGC 引发的多巴胺释放是影响视锥细胞位置的一种机制。

相似文献

1
Melanopsin Retinal Ganglion Cells Regulate Cone Photoreceptor Lamination in the Mouse Retina.
Cell Rep. 2018 May 22;23(8):2416-2428. doi: 10.1016/j.celrep.2018.04.086.
2
Photoreceptive Ganglion Cells Drive Circuits for Local Inhibition in the Mouse Retina.
J Neurosci. 2021 Feb 17;41(7):1489-1504. doi: 10.1523/JNEUROSCI.0674-20.2020. Epub 2021 Jan 4.
3
M1 ipRGCs Influence Visual Function through Retrograde Signaling in the Retina.
J Neurosci. 2016 Jul 6;36(27):7184-97. doi: 10.1523/JNEUROSCI.3500-15.2016.
4
Intrinsic photosensitive retinal ganglion cells in the diurnal rodent, Arvicanthis ansorgei.
PLoS One. 2013 Aug 9;8(8):e73343. doi: 10.1371/journal.pone.0073343. eCollection 2013.
5
Melanopsin cells are the principal conduits for rod-cone input to non-image-forming vision.
Nature. 2008 May 1;453(7191):102-5. doi: 10.1038/nature06829. Epub 2008 Apr 23.
6
M1 Intrinsically Photosensitive Retinal Ganglion Cells Integrate Rod and Melanopsin Inputs to Signal in Low Light.
Cell Rep. 2019 Dec 10;29(11):3349-3355.e2. doi: 10.1016/j.celrep.2019.11.024.
7
C-terminal phosphorylation regulates the kinetics of a subset of melanopsin-mediated behaviors in mice.
Proc Natl Acad Sci U S A. 2017 Mar 7;114(10):2741-2746. doi: 10.1073/pnas.1611893114. Epub 2017 Feb 21.
8
9
Retinal Waves Modulate an Intraretinal Circuit of Intrinsically Photosensitive Retinal Ganglion Cells.
J Neurosci. 2016 Jun 29;36(26):6892-905. doi: 10.1523/JNEUROSCI.0572-16.2016.
10
Orexin-A Suppresses Signal Transmission to Dopaminergic Amacrine Cells From Outer and Inner Retinal Photoreceptors.
Invest Ophthalmol Vis Sci. 2017 Sep 1;58(11):4712-4721. doi: 10.1167/iovs.17-21835.

引用本文的文献

1
Light-eye-body axis: exploring the network from retinal illumination to systemic regulation.
Theranostics. 2025 Jan 2;15(4):1496-1523. doi: 10.7150/thno.106589. eCollection 2025.
2
Cellular and Molecular Mechanisms Regulating Retinal Synapse Development.
Annu Rev Vis Sci. 2024 Sep;10(1):377-402. doi: 10.1146/annurev-vision-102122-105721.
3
Developmental control of rod number via a light-dependent retrograde pathway from intrinsically photosensitive retinal ganglion cells.
Dev Cell. 2024 Nov 4;59(21):2897-2911.e6. doi: 10.1016/j.devcel.2024.07.018. Epub 2024 Aug 13.
4
Light activation of the dopaminergic system occurs after eye-opening in the mouse retina.
Front Ophthalmol (Lausanne). 2023 May 9;3:1184627. doi: 10.3389/fopht.2023.1184627. eCollection 2023.
5
Progenitor division and cell autonomous neurosecretion are required for rod photoreceptor sublaminar positioning.
Proc Natl Acad Sci U S A. 2023 Oct 17;120(42):e2308204120. doi: 10.1073/pnas.2308204120. Epub 2023 Oct 9.
6
Burning the candle at both ends: Intraretinal signaling of intrinsically photosensitive retinal ganglion cells.
Front Cell Neurosci. 2023 Jan 6;16:1095787. doi: 10.3389/fncel.2022.1095787. eCollection 2022.
7
Robust visual cortex evoked potentials (VEP) in Gnat1 and Gnat2 knockout mice.
Front Cell Neurosci. 2022 Dec 20;16:1090037. doi: 10.3389/fncel.2022.1090037. eCollection 2022.
9
The Newborn's Reaction to Light as the Determinant of the Brain's Activation at Human Birth.
Front Integr Neurosci. 2022 Sep 2;16:933426. doi: 10.3389/fnint.2022.933426. eCollection 2022.

本文引用的文献

1
The Development of Mid-Wavelength Photoresponsivity in the Mouse Retina.
Curr Eye Res. 2018 May;43(5):666-673. doi: 10.1080/02713683.2018.1433859. Epub 2018 Feb 15.
2
Melanopsin ganglion cell outer retinal dendrites: Morphologically distinct and asymmetrically distributed in the mouse retina.
J Comp Neurol. 2017 Dec 1;525(17):3653-3665. doi: 10.1002/cne.24293. Epub 2017 Aug 12.
4
Temporal profiling of photoreceptor lineage gene expression during murine retinal development.
Gene Expr Patterns. 2017 Jan;23-24:32-44. doi: 10.1016/j.gep.2017.03.001. Epub 2017 Mar 10.
6
Early light deprivation effects on human cone-driven retinal function.
Acta Ophthalmol. 2017 Mar;95(2):133-139. doi: 10.1111/aos.13191. Epub 2016 Aug 18.
7
M1 ipRGCs Influence Visual Function through Retrograde Signaling in the Retina.
J Neurosci. 2016 Jul 6;36(27):7184-97. doi: 10.1523/JNEUROSCI.3500-15.2016.
9
Epigenomic landscapes of retinal rods and cones.
Elife. 2016 Mar 7;5:e11613. doi: 10.7554/eLife.11613.
10
RASGRF2 controls nuclear migration in postnatal retinal cone photoreceptors.
J Cell Sci. 2016 Feb 15;129(4):729-42. doi: 10.1242/jcs.180919. Epub 2016 Jan 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验