Andrich David, Marais Ida, Humphry Stephen Mark
The University of Western Australia, Perth, Western Australia, Australia.
Educ Psychol Meas. 2016 Jun;76(3):412-435. doi: 10.1177/0013164415594202. Epub 2015 Jul 7.
Recent research has shown how the statistical bias in Rasch model difficulty estimates induced by guessing in multiple-choice items can be eliminated. Using vertical scaling of a high-profile national reading test, it is shown that the dominant effect of removing such bias is a nonlinear change in the unit of scale across the continuum. The consequence is that the proficiencies of the more proficient students are increased relative to those of the less proficient. Not controlling the guessing bias underestimates the progress of students across 7 years of schooling with important educational implications.
最近的研究表明,如何消除多项选择题中因猜测而导致的拉施模型难度估计中的统计偏差。通过对一项备受瞩目的全国性阅读测试进行纵向量表分析,结果显示消除此类偏差的主要影响是量表单位在整个连续体上的非线性变化。其结果是,较熟练学生的能力相对于不太熟练的学生有所提高。不控制猜测偏差会低估学生在7年学校教育中的进步,这具有重要的教育意义。