Suppr超能文献

第 11 族纳米粒子上的 CO 吸附和氧活化 - 关于尺寸效应和活化过程的 DFT 和高水平 CCSD(T)联合研究。

CO adsorption and oxygen activation on group 11 nanoparticles - a combined DFT and high level CCSD(T) study about size effects and activation processes.

机构信息

Carl von Ossietzky Universität Oldenburg, Institute for Chemistry, 26129 Oldenburg, Germany.

出版信息

Faraday Discuss. 2018 Sep 3;208(0):105-121. doi: 10.1039/c7fd00225d.

Abstract

The focus of this study lies in the activation of molecular oxygen and reaction with CO within density functional theory (DFT) and high level CCSD(T) calculations. Therefore, we use M13 and M55 nanoparticles (NPs) and periodic M(321) surfaces as model systems and compare the catalytic activity of gold substrates to Ag and Cu based NP catalysts. In the first step, the adsorption energies of CO were compared for nanoparticles of different sizes for Au, Ag and Cu. The adsorption energies on M(321) and M55 NPs (M = Au, Ag, Cu) are virtually identical. For smaller M13 NPs the adsorption energies differ by ∼0.2 eV for Ag, ∼0.4 eV for Au, and ∼0.6 eV for Cu at the PBE level of theory. This can be explained by size effects, as the M13 NPs show a more molecule-like character. Presumably, CO binds more strongly to these very small NPs at the PBE level of theory. However, a benchmark calculation in the framework of CCSD(T)-theory reveals an adsorption energy of CO on Au13 of -0.88 eV, comparable to the adsorption energies calculated at the PBE level for Au55 and Au(321). For Au55, the adsorption energy calculated at the CCSD(T) level is -0.85 eV. This is in perfect agreement with the PBE result. In addition to adsorption energies, dissociation barriers have been calculated on M(321) surfaces. The dissociation energies of O2 on coinage metal catalysts are high, so that direct CO-oxidation reactions with molecular oxygen should be the dominant reaction mechanism compared to the dissociation and reaction of CO and atomic oxygen at least for silver and copper catalysts.

摘要

本研究的重点在于通过密度泛函理论(DFT)和高精度 CCSD(T)计算来激活分子氧并使其与 CO 反应。因此,我们使用 M13 和 M55 纳米颗粒(NPs)以及周期性 M(321)表面作为模型系统,并比较了金基底对 Ag 和 Cu 基 NP 催化剂的催化活性。在第一步中,我们比较了不同尺寸的 Au、Ag 和 Cu 纳米颗粒对 CO 的吸附能。在 M(321)和 M55 NPs(M=Au、Ag、Cu)上的吸附能几乎相同。对于较小的 M13 NPs,在 PBE 理论水平上,Ag 的吸附能相差约 0.2 eV,Au 的吸附能相差约 0.4 eV,Cu 的吸附能相差约 0.6 eV。这可以用尺寸效应来解释,因为 M13 NPs 表现出更类似于分子的特性。根据 PBE 理论,CO 很可能在这些非常小的 NPs 上结合得更紧密。然而,在 CCSD(T)-理论框架内进行的基准计算表明,Au13 上 CO 的吸附能为-0.88 eV,与 Au55 和 Au(321)在 PBE 理论水平上计算的吸附能相当。对于 Au55,在 CCSD(T)水平上计算的吸附能为-0.85 eV。这与 PBE 结果完全一致。除了吸附能,我们还在 M(321)表面上计算了解离势垒。在贵金属催化剂上,O2 的解离能较高,因此与分子氧的直接 CO 氧化反应相比,至少对于银和铜催化剂,CO 和原子氧的解离和反应应该是主要的反应机制。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验