Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, Gif-sur-Yvette, France.
Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, China.
Glob Chang Biol. 2018 Oct;24(10):4731-4746. doi: 10.1111/gcb.14328. Epub 2018 Jun 17.
The net flux of CO exchanged with the atmosphere following grassland-related land-use change (LUC) depends on the subsequent temporal dynamics of soil organic carbon (SOC). Yet, the magnitude and timing of these dynamics are still unclear. We compiled a global data set of 836 paired-sites to quantify temporal SOC changes after grassland-related LUC. In order to discriminate between SOC losses from the initial ecosystem and gains from the secondary one, the post-LUC time series of SOC data was combined with satellite-based net primary production observations as a proxy of carbon input to the soil. Globally, land conversion from either cropland or forest into grassland leads to SOC accumulation; the reverse shows net SOC loss. The SOC response curves vary between different regions. Conversion of cropland to managed grassland results in more SOC accumulation than natural grassland recovery from abandoned cropland. We did not consider the biophysical variables (e.g., climate conditions and soil properties) when fitting the SOC turnover rate into the observation data but analyzed the relationships between the fitted turnover rate and these variables. The SOC turnover rate is significantly correlated with temperature and precipitation (p < 0.05), but not with the clay fraction of soils (p > 0.05). Comparing our results with predictions from bookkeeping models, we found that bookkeeping models overestimate by 56% of the long-term (100 years horizon) cumulative SOC emissions for grassland-related LUC types in tropical and temperate regions since 2000. We also tested the spatial representativeness of our data set and calculated SOC response curves using the representative subset of sites in each region. Our study provides new insight into the impact grassland-related LUC on the global carbon budget and sheds light on the potential of grassland conservation for climate mitigation.
受草原相关土地利用变化(LUC)影响,与大气进行 CO2 交换的净通量取决于土壤有机碳(SOC)随后的时间动态。然而,这些动态的幅度和时间仍不清楚。我们汇编了一个包含 836 对地点的全球数据集,以量化草原相关 LUC 后 SOC 的时间变化。为了区分初始生态系统 SOC 的损失和次生生态系统 SOC 的增加,将 LUC 后 SOC 数据时间序列与基于卫星的净初级生产力观测相结合,作为土壤碳输入的替代指标。全球范围内,将耕地或林地转化为草地会导致 SOC 积累;相反,会导致净 SOC 损失。SOC 响应曲线因不同地区而异。与从废弃耕地恢复的天然草地相比,将耕地转化为管理草地会导致更多的 SOC 积累。我们在拟合 SOC 周转率观察数据时没有考虑生物物理变量(例如气候条件和土壤特性),但分析了拟合周转率与这些变量之间的关系。SOC 周转率与温度和降水显著相关(p<0.05),但与土壤粘粒含量无关(p>0.05)。将我们的结果与簿记模型的预测进行比较,我们发现自 2000 年以来,簿记模型高估了热带和温带地区草原相关 LUC 类型在 100 年时间范围内的长期(100 年)累积 SOC 排放 56%。我们还测试了数据集的空间代表性,并使用每个区域的代表性站点子集计算 SOC 响应曲线。我们的研究提供了关于草原相关 LUC 对全球碳预算的影响的新见解,并揭示了草原保护在气候缓解方面的潜力。