文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

通过原子转移自由基聚合(ATRP)方法合成的胃肠道黏液与口服两亲嵌段共聚物相互作用的机理研究。

Mechanistic insight into the interaction of gastrointestinal mucus with oral diblock copolymers synthesized via ATRP method.

机构信息

Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, China.

Department of Pharmacy, Qingdao No 3 Hospital, Qingdao, China.

出版信息

Int J Nanomedicine. 2018 May 15;13:2839-2856. doi: 10.2147/IJN.S160651. eCollection 2018.


DOI:10.2147/IJN.S160651
PMID:29805260
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC5960240/
Abstract

INTRODUCTION: Nanoparticles are increasingly used as drug carriers for oral administration. The delivery of drug molecules is largely dependent on the interaction of nanocarriers and gastrointestinal (GI) mucus, a critical barrier that regulates drug absorption. It is therefore important to understand the effects of physical and chemical properties of nanocarriers on the interaction with GI mucus. Unfortunately, most of the nanoparticles are unable to be prepared with satisfactory structural monodispersity to comprehensively investigate the interaction. With controlled size, shape, and surface chemistry, copolymers are ideal candidates for such purpose. MATERIALS AND METHODS: We synthesized a series of diblock copolymers via the atom transfer radical polymerization method and investigated the GI mucus permeability in vitro and in vivo. RESULTS: Our results indicated that uncharged and hydrophobic copolymers exhibited enhanced GI absorption. CONCLUSION: These results provide insights into developing optimal nanocarriers for oral administration.

摘要

简介:纳米颗粒越来越多地被用作口服给药的药物载体。药物分子的输送在很大程度上取决于纳米载体与胃肠道(GI)粘液的相互作用,GI 粘液是调节药物吸收的关键屏障。因此,了解纳米载体的物理和化学性质对与 GI 粘液相互作用的影响非常重要。不幸的是,大多数纳米颗粒无法制备出具有令人满意的结构单分散性来全面研究相互作用。具有受控尺寸、形状和表面化学性质的嵌段共聚物是实现这一目的的理想候选物。

材料和方法:我们通过原子转移自由基聚合方法合成了一系列嵌段共聚物,并在体外和体内研究了 GI 粘液的通透性。

结果:我们的结果表明,不带电荷和疏水性的共聚物表现出增强的 GI 吸收。

结论:这些结果为开发用于口服给药的最佳纳米载体提供了思路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/87b4/5960240/04ee62e04802/ijn-13-2839Fig10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/87b4/5960240/9202f917ebb0/ijn-13-2839Fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/87b4/5960240/5e2c21c96fac/ijn-13-2839Fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/87b4/5960240/37f13d7146e9/ijn-13-2839Fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/87b4/5960240/4fc962ea4854/ijn-13-2839Fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/87b4/5960240/d48c68cfd12e/ijn-13-2839Fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/87b4/5960240/29d2f0d53095/ijn-13-2839Fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/87b4/5960240/63ec52c6bff7/ijn-13-2839Fig7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/87b4/5960240/721203e5df45/ijn-13-2839Fig8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/87b4/5960240/0c034f758f90/ijn-13-2839Fig9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/87b4/5960240/04ee62e04802/ijn-13-2839Fig10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/87b4/5960240/9202f917ebb0/ijn-13-2839Fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/87b4/5960240/5e2c21c96fac/ijn-13-2839Fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/87b4/5960240/37f13d7146e9/ijn-13-2839Fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/87b4/5960240/4fc962ea4854/ijn-13-2839Fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/87b4/5960240/d48c68cfd12e/ijn-13-2839Fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/87b4/5960240/29d2f0d53095/ijn-13-2839Fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/87b4/5960240/63ec52c6bff7/ijn-13-2839Fig7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/87b4/5960240/721203e5df45/ijn-13-2839Fig8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/87b4/5960240/0c034f758f90/ijn-13-2839Fig9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/87b4/5960240/04ee62e04802/ijn-13-2839Fig10.jpg

相似文献

[1]
Mechanistic insight into the interaction of gastrointestinal mucus with oral diblock copolymers synthesized via ATRP method.

Int J Nanomedicine. 2018-5-15

[2]
Lipid nanovehicles with adjustable surface properties for overcoming multiple barriers simultaneously in oral administration.

Int J Pharm. 2017-2-6

[3]
Overcoming multiple gastrointestinal barriers by bilayer modified hollow mesoporous silica nanocarriers.

Acta Biomater. 2017-10-14

[4]
Amphotericin B aggregation inhibition with novel nanoparticles prepared with poly(epsilon-caprolactone)/poly(n,n-dimethylamino-2-ethyl methacrylate) diblock copolymer.

J Microbiol Biotechnol. 2011-1

[5]
Research on the fate of polymeric nanoparticles in the process of the intestinal absorption based on model nanoparticles with various characteristics: size, surface charge and pro-hydrophobics.

J Nanobiotechnology. 2021-1-27

[6]
The Influence of Nanoparticle Properties on Oral Bioavailability of Drugs.

Int J Nanomedicine. 2020-8-24

[7]
Virus-Mimicking Mesoporous Silica Nanoparticles with an Electrically Neutral and Hydrophilic Surface to Improve the Oral Absorption of Insulin by Breaking Through Dual Barriers of the Mucus Layer and the Intestinal Epithelium.

ACS Appl Mater Interfaces. 2021-4-21

[8]
Denatured globular protein and bile salt-coated nanoparticles for poorly water-soluble drugs: Penetration across the intestinal epithelial barrier into the circulation system and enhanced oral bioavailability.

Int J Pharm. 2015-11-10

[9]
Enhanced oral absorption and anticancer efficacy of cabazitaxel by overcoming intestinal mucus and epithelium barriers using surface polyethylene oxide (PEO) decorated positively charged polymer-lipid hybrid nanoparticles.

J Control Release. 2017-11-11

[10]
Size-exclusive effect of nanostructured lipid carriers on oral drug delivery.

Int J Pharm. 2016-9-10

引用本文的文献

[1]
Formation of self-assembly aggregates in traditional Chinese medicine decoctions and their application in cancer treatments.

RSC Adv. 2025-2-18

[2]
Overcoming Multiple Absorption Barrier for Insulin Oral Delivery Using Multifunctional Nanoparticles Based on Chitosan Derivatives and Hyaluronic Acid.

Int J Nanomedicine. 2020-7-9

[3]
NIR-guided dendritic nanoplatform for improving antitumor efficacy by combining chemo-phototherapy.

Int J Nanomedicine. 2019-7-8

[4]
Biodegradable Micelles for NIR/GSH-Triggered Chemophototherapy of Cancer.

Nanomaterials (Basel). 2019-1-11

本文引用的文献

[1]
Mucus adhesion- and penetration-enhanced liposomes for paclitaxel oral delivery.

Int J Pharm. 2017-12-27

[2]
Efficacy and safety concerns over the use of mucus modulating agents for drug delivery using nanoscale systems.

Adv Drug Deliv Rev. 2017-12-13

[3]
Evaluation of liposomal behavior in the gastrointestinal tract after oral administration using real-time in vivo imaging.

Drug Dev Ind Pharm. 2017-11-30

[4]
Beyond PEGylation: Alternative surface-modification of nanoparticles with mucus-inert biomaterials.

Adv Drug Deliv Rev. 2017-7-20

[5]
Innovative Methods and Applications in Mucoadhesion Research.

Macromol Biosci. 2017-8

[6]
Enhancing insulin oral absorption by using mucoadhesive nanoparticles loaded with LMWP-linked insulin conjugates.

J Control Release. 2016-5-10

[7]
Size-Limited Penetration of Nanoparticles into Porcine Respiratory Mucus after Aerosol Deposition.

Biomacromolecules. 2016-4-11

[8]
Targeted modulation of cell differentiation in distinct regions of the gastrointestinal tract via oral administration of differently PEG-PEI functionalized mesoporous silica nanoparticles.

Int J Nanomedicine. 2016-1-18

[9]
Efficient mucus permeation and tight junction opening by dissociable "mucus-inert" agent coated trimethyl chitosan nanoparticles for oral insulin delivery.

J Control Release. 2015-12-11

[10]
Overcoming barriers in Pseudomonas aeruginosa lung infections: Engineered nanoparticles for local delivery of a cationic antimicrobial peptide.

Colloids Surf B Biointerfaces. 2015-11-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索