Suppr超能文献

快速微波辅助纳米硅烷功能化甘氨酸和还原型谷胱甘肽表面吸附重金属。

Fast microwave-assisted sorption of heavy metals on the surface of nanosilica-functionalized-glycine and reduced glutathione.

机构信息

Faculty of Sciences, Chemistry Department, Alexandria University, P.O. Box 426, Alexandria 21321, Egypt.

Faculty of Science, Chemistry Department, Ain Shams University, P.O. Box 80205, Cairo, Egypt.

出版信息

Bioresour Technol. 2018 Sep;264:228-237. doi: 10.1016/j.biortech.2018.05.052. Epub 2018 May 26.

Abstract

Two eco-friendly nanosorbents have been designed and synthesized via surface crosslinking of nanosilica (N-Si) with glycine (Gly) and reduced glutathione (GSH) to produce (N-Si-Gly) and (N-Si-Glu) using crosslinking reagent and sonochemical reactions, respectively. An investigation was performed to search selectivity of nanosorbents via microwave-assisted removal of Ni(II)/Cu(II)/Cd(II)/Pb(II) to affirm green and fast technique. The microwave-assisted removal values of Ni(II), Cu(II), Cd(II) and Pb(II) were observed at 850, 2100, 3500 and 2150 μmol g, respectively utilizing 10 mg of (N-Si-Glu) and 25.0 s heating, while those corresponded to 750, 1800, 2500 and 1850 μmol g, respectively by using (N-Si-Gly). The microwave-assisted removal processes were more fitted to Freundlich compared to Langmuir isotherm except in case of Pb(II). The high percent removal of Cd(II) and Pb(II) ions exceed 95% from the second run in real wastewater samples indicating the efficiency of N-Si-Glu in the uptake of these metals utilizing microwave-assisted sorption technique.

摘要

两种环保型纳米吸附剂通过纳米二氧化硅(N-Si)与甘氨酸(Gly)和还原型谷胱甘肽(GSH)的表面交联,分别使用交联试剂和超声化学反应合成(N-Si-Gly)和(N-Si-Glu)。通过微波辅助去除 Ni(II)/Cu(II)/Cd(II)/Pb(II)来搜索纳米吸附剂的选择性,以证实绿色和快速技术。利用 10mg 的(N-Si-Glu)和 25.0s 的加热,分别观察到 Ni(II)、Cu(II)、Cd(II)和 Pb(II)的微波辅助去除值为 850、2100、3500 和 2150μmol/g,而使用(N-Si-Gly)时,相应的值分别为 750、1800、2500 和 1850μmol/g。除了 Pb(II)之外,微波辅助去除过程更符合 Freundlich 等温线,而不是 Langmuir 等温线。在实际废水样品中,Cd(II)和 Pb(II)离子的高去除率超过 95%,表明在微波辅助吸附技术中,N-Si-Glu 对这些金属的吸附效率很高。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验