School of Chemistry, Cardiff University, Main Building, Park Place, CF10 3AT, Cardiff, UK.
Faraday Discuss. 2018 Sep 3;208(0):87-104. doi: 10.1039/c7fd00217c.
The performance of supported metal catalysts, such as nickel nanoparticles decorating yttria-stabilized zirconia (YSZ), depends on their microstructure and the metal-support interface. Here, we have used spin polarized density functional theory (DFT) to evaluate different Ni cluster geometries and determined the electronic structure of the most stable configurations. We have described the interaction of Nin (n = 1-10) clusters supported on the cubic ZrO2(111) and YSZ(111) surfaces, which show a preference for pyramidal shapes rather than flat structures wetting the surface. The interfacial interaction is characterized by charge transfer from the cluster to the surface. We also show how yttrium, present in YSZ, affects the Ni-Ni interaction. Through analysing the difference between the cohesive energy and the clustering energy, we show the preference of Ni-Ni bond formation over Ni-surface interaction; this energy difference decreases with the increase of the Nin cluster size. From the evaluation of the Ni atomic hopping rates on YSZ, we have demonstrated that under different temperature conditions, Ni atoms aggregate with other atoms and clusters, which affects the cluster size stability.
负载型金属催化剂(如负载在氧化钇稳定氧化锆(YSZ)上的镍纳米颗粒)的性能取决于其微观结构和金属-载体界面。在这里,我们使用自旋极化密度泛函理论(DFT)来评估不同的 Ni 团簇几何形状,并确定最稳定构型的电子结构。我们描述了负载在立方 ZrO2(111)和 YSZ(111)表面的 Nin(n = 1-10)团簇的相互作用,它们优先采用金字塔形状而不是覆盖表面的平坦结构。界面相互作用的特征是从团簇到表面的电荷转移。我们还展示了 YSZ 中存在的钇如何影响 Ni-Ni 相互作用。通过分析结合能和团簇化能之间的差异,我们表明 Ni-Ni 键形成优于 Ni-表面相互作用;随着 Nin 团簇尺寸的增加,这种能量差减小。通过评估 Ni 原子在 YSZ 上的原子跳跃率,我们证明了在不同的温度条件下,Ni 原子会与其他原子和团簇聚集,从而影响团簇尺寸的稳定性。