Suppr超能文献

为什么 DNA 是双链的?DNA 切除修复机制的发现。

Why Is DNA Double Stranded? The Discovery of DNA Excision Repair Mechanisms.

机构信息

Department of Molecular Genetics and Cell Biology, The University of Chicago, Illinois 60637

出版信息

Genetics. 2018 Jun;209(2):357-366. doi: 10.1534/genetics.118.300958.

Abstract

The persistence of hereditary traits over many generations testifies to the stability of the genetic material. Although the Watson-Crick structure for DNA provided a simple and elegant mechanism for replication, some elementary calculations implied that mistakes due to tautomeric shifts would introduce too many errors to permit this stability. It seemed evident that some additional mechanism(s) to correct such errors must be required. This essay traces the early development of our understanding of such mechanisms. Their key feature is the cutting out of a section of the strand of DNA in which the errors or damage resided, and its replacement by a localized synthesis using the undamaged strand as a template. To the surprise of some of the founders of molecular biology, this understanding derives in large part from studies in radiation biology, a field then considered by many to be irrelevant to studies of gene structure and function. Furthermore, genetic studies suggesting mechanisms of mismatch correction were ignored for almost a decade by biochemists unacquainted or uneasy with the power of such analysis. The collective body of results shows that the double-stranded structure of DNA is critical not only for replication but also as a scaffold for the correction of errors and the removal of damage to DNA. As additional discoveries were made, it became clear that the mechanisms for the repair of damage were involved not only in maintaining the stability of the genetic material but also in a variety of biological phenomena for increasing diversity, from genetic recombination to the immune response.

摘要

遗传特征在许多世代中的持续存在证明了遗传物质的稳定性。尽管沃森-克里克(Watson-Crick)的 DNA 结构为复制提供了一个简单而优雅的机制,但一些基本计算表明,由于互变异构移位而导致的错误会引入太多错误,从而无法保证这种稳定性。似乎显然需要一些其他机制来纠正这些错误。本文追溯了我们对这些机制的早期理解的发展。它们的关键特征是切除包含错误或损伤的 DNA 链的一部分,并用未受损的链作为模板进行局部合成来替换它。令一些分子生物学的创始人感到惊讶的是,这种理解在很大程度上源自辐射生物学的研究,当时许多人认为该领域与基因结构和功能的研究无关。此外,遗传研究表明,错配校正机制几乎被十年来不熟悉或不适应这种分析的生物化学家所忽视。大量的结果表明,DNA 的双链结构不仅对复制至关重要,而且对错误的校正和 DNA 损伤的去除也是至关重要的。随着更多的发现,修复损伤的机制不仅参与了遗传物质稳定性的维持,而且还参与了从遗传重组到免疫反应等各种增加多样性的生物学现象。

相似文献

1
Why Is DNA Double Stranded? The Discovery of DNA Excision Repair Mechanisms.
Genetics. 2018 Jun;209(2):357-366. doi: 10.1534/genetics.118.300958.
2
Influence of oxidized purine processing on strand directionality of mismatch repair.
J Biol Chem. 2015 Apr 17;290(16):9986-99. doi: 10.1074/jbc.M114.629907. Epub 2015 Feb 18.
3
Postreplicative mismatch repair.
Cold Spring Harb Perspect Biol. 2013 Apr 1;5(4):a012633. doi: 10.1101/cshperspect.a012633.
5
Replication infidelity via a mismatch with Watson-Crick geometry.
Proc Natl Acad Sci U S A. 2011 Feb 1;108(5):1862-7. doi: 10.1073/pnas.1012825108. Epub 2011 Jan 13.
6
High-resolution genomic assays provide insight into the division of labor between TLS and HDR in mammalian replication of damaged DNA.
DNA Repair (Amst). 2016 Aug;44:59-67. doi: 10.1016/j.dnarep.2016.05.007. Epub 2016 May 16.
7
Recognition of DNA alterations by the mismatch repair system.
Biochem J. 1999 Feb 15;338 ( Pt 1)(Pt 1):1-13.
8
Base excision repair fidelity in normal and cancer cells.
Mutagenesis. 2006 May;21(3):173-8. doi: 10.1093/mutage/gel020. Epub 2006 Apr 13.
9
Strand discrimination in DNA mismatch repair.
DNA Repair (Amst). 2021 Sep;105:103161. doi: 10.1016/j.dnarep.2021.103161. Epub 2021 Jun 19.
10
Ribonucleotides misincorporated into DNA act as strand-discrimination signals in eukaryotic mismatch repair.
Mol Cell. 2013 May 9;50(3):323-32. doi: 10.1016/j.molcel.2013.03.019. Epub 2013 Apr 18.

引用本文的文献

1
Purine Scaffold in Agents for Cancer Treatment.
ACS Omega. 2025 Apr 29;10(18):18170-18183. doi: 10.1021/acsomega.5c00340. eCollection 2025 May 13.
2
Formation and repair of unavoidable, endogenous interstrand cross-links in cellular DNA.
DNA Repair (Amst). 2021 Feb;98:103029. doi: 10.1016/j.dnarep.2020.103029. Epub 2020 Dec 24.
3
Intermittent hypoxemia and oxidative stress in preterm infants.
Respir Physiol Neurobiol. 2019 Aug;266:121-129. doi: 10.1016/j.resp.2019.05.006. Epub 2019 May 14.

本文引用的文献

1
A Physicist's Quest in Biology: Max Delbrück and "Complementarity".
Genetics. 2017 Jun;206(2):641-650. doi: 10.1534/genetics.117.201517.
2
Robin Holliday: 1932–2014.
Cell. 2014 May 22;157(5):1001-3. doi: 10.1016/j.cell.2014.05.005.
3
MutL: conducting the cell's response to mismatched and misaligned DNA.
Bioessays. 2010 Jan;32(1):51-9. doi: 10.1002/bies.200900089.
5
A mechanism for gene conversion in fungi.
Genet Res. 2007 Dec;89(5-6):285-307. doi: 10.1017/S0016672308009476.
6
The production of mutations by chemical substances.
Proc R Soc Edinb Biol. 1947;62:271-83.
7
The foundations of molecular biology: a 50th anniversary.
Curr Biol. 2008 Mar 25;18(6):R234-6. doi: 10.1016/j.cub.2008.02.016.
9
ARTIFICIAL TRANSMUTATION OF THE GENE.
Science. 1927 Jul 22;66(1699):84-7. doi: 10.1126/science.66.1699.84.
10
MUTATIONS IN BARLEY INDUCED BY X-RAYS AND RADIUM.
Science. 1928 Aug 24;68(1756):186-7. doi: 10.1126/science.68.1756.186.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验