适用于西欧的生物可利用锶同位素图集:一种机器学习方法。

A bioavailable strontium isoscape for Western Europe: A machine learning approach.

机构信息

Department of Earth and Environmental Sciences, University of Ottawa, Ottawa, Canada.

Department of Geological Sciences, University of North Carolina, Chapel Hill, N.C., United States of America.

出版信息

PLoS One. 2018 May 30;13(5):e0197386. doi: 10.1371/journal.pone.0197386. eCollection 2018.

Abstract

Strontium isotope ratios (87Sr/86Sr) are gaining considerable interest as a geolocation tool and are now widely applied in archaeology, ecology, and forensic research. However, their application for provenance requires the development of baseline models predicting surficial 87Sr/86Sr variations ("isoscapes"). A variety of empirically-based and process-based models have been proposed to build terrestrial 87Sr/86Sr isoscapes but, in their current forms, those models are not mature enough to be integrated with continuous-probability surface models used in geographic assignment. In this study, we aim to overcome those limitations and to predict 87Sr/86Sr variations across Western Europe by combining process-based models and a series of remote-sensing geospatial products into a regression framework. We find that random forest regression significantly outperforms other commonly used regression and interpolation methods, and efficiently predicts the multi-scale patterning of 87Sr/86Sr variations by accounting for geological, geomorphological and atmospheric controls. Random forest regression also provides an easily interpretable and flexible framework to integrate different types of environmental auxiliary variables required to model the multi-scale patterning of 87Sr/86Sr variability. The method is transferable to different scales and resolutions and can be applied to the large collection of geospatial data available at local and global levels. The isoscape generated in this study provides the most accurate 87Sr/86Sr predictions in bioavailable strontium for Western Europe (R2 = 0.58 and RMSE = 0.0023) to date, as well as a conservative estimate of spatial uncertainty by applying quantile regression forest. We anticipate that the method presented in this study combined with the growing numbers of bioavailable 87Sr/86Sr data and satellite geospatial products will extend the applicability of the 87Sr/86Sr geo-profiling tool in provenance applications.

摘要

锶同位素比值(87Sr/86Sr)作为一种地理位置定位工具,正受到越来越多的关注,目前已广泛应用于考古学、生态学和法医学研究。然而,要将其应用于物源研究,则需要开发预测表层 87Sr/86Sr 变化的基线模型(“锶同位素图谱”)。目前已经提出了多种基于经验和基于过程的模型来构建陆地 87Sr/86Sr 锶同位素图谱,但就目前而言,这些模型还不够成熟,无法与地理归属中使用的连续概率曲面模型相结合。在这项研究中,我们旨在克服这些限制,通过将基于过程的模型与一系列遥感地理空间产品相结合,构建一个回归框架,来预测整个西欧的 87Sr/86Sr 变化。我们发现,随机森林回归显著优于其他常用的回归和插值方法,能够通过考虑地质、地貌和大气控制因素,有效地预测 87Sr/86Sr 变化的多尺度模式。随机森林回归还提供了一个易于解释和灵活的框架,可以整合建模 87Sr/86Sr 变异性多尺度模式所需的不同类型的环境辅助变量。该方法可转移到不同的尺度和分辨率,并可应用于本地和全球各级大量可用的地理空间数据。本研究生成的锶同位素图谱为整个西欧提供了迄今为止最精确的生物可利用锶的 87Sr/86Sr 预测(R2=0.58,RMSE=0.0023),并通过应用分位数回归森林对空间不确定性进行了保守估计。我们预计,本研究提出的方法与不断增加的生物可利用 87Sr/86Sr 数据和卫星地理空间产品相结合,将扩大 87Sr/86Sr 地理剖析工具在物源研究中的应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f037/5976198/e76ccf4670bc/pone.0197386.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索