Suppr超能文献

基于高光谱成像的油菜叶片茎基溃疡病检测

Detection of Stem Rot on Oilseed Rape ( L.) Leaves Using Hyperspectral Imaging.

机构信息

School of Information Engineering, Zhejiang A & F University, Hangzhou 311300, China.

College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.

出版信息

Sensors (Basel). 2018 Jun 1;18(6):1764. doi: 10.3390/s18061764.

Abstract

Hyperspectral imaging was explored to detect stem rot (SSR) on oilseed rape leaves with chemometric methods, and the influences of variable selection, machine learning, and calibration transfer methods on detection performances were evaluated. Three different sample sets containing healthy and infected oilseed rape leaves were acquired under different imaging acquisition parameters. Four discriminant models were built using full spectra, including partial least squares-discriminant analysis (PLS-DA), support vector machine (SVM), soft independent modeling of class analogies (SIMCA), and k-nearest neighbors (KNN). PLS-DA and SVM models were also built with the optimal wavelengths selected by principal component analysis (PCA) loadings, second derivative spectra, competitive adaptive reweighted sampling (CARS), and successive projections algorithm (SPA). The optimal wavelengths selected for each sample set by different methods were different; however, the optimal wavelengths selected by PCA loadings and second derivative spectra showed similarity between different sample sets. Direct standardization (DS) was successfully applied to reduce spectral differences among different sample sets. Overall, the results demonstrated that using hyperspectral imaging with chemometrics for plant disease detection can be efficient and will also help in the selection of optimal variable selection, machine learning, and calibration transfer methods for fast and accurate plant disease detection.

摘要

利用化学计量学方法探索了基于高光谱成像技术的油菜叶片茎基溃疡病(SSR)检测方法,并评估了变量选择、机器学习和校准传递方法对检测性能的影响。在不同的成像采集参数下,采集了包含健康和感染油菜叶片的三个不同样本集。使用全光谱构建了四个判别模型,包括偏最小二乘判别分析(PLS-DA)、支持向量机(SVM)、软独立建模分类类比(SIMCA)和 K 最近邻(KNN)。还使用主成分分析(PCA)载荷、二阶导数光谱、竞争自适应重加权采样(CARS)和连续投影算法(SPA)选择的最优波长构建了 PLS-DA 和 SVM 模型。不同方法为每个样本集选择的最优波长不同;然而,PCA 载荷和二阶导数光谱选择的最优波长在不同样本集之间表现出相似性。直接标准化(DS)成功地应用于减少不同样本集之间的光谱差异。总的来说,结果表明,使用高光谱成像技术和化学计量学进行植物病害检测是有效的,也有助于选择最优的变量选择、机器学习和校准传递方法,以实现快速准确的植物病害检测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a33b/6021932/b4182def137e/sensors-18-01764-g001.jpg

相似文献

1
Detection of Stem Rot on Oilseed Rape ( L.) Leaves Using Hyperspectral Imaging.
Sensors (Basel). 2018 Jun 1;18(6):1764. doi: 10.3390/s18061764.
2
4
Mid-infrared spectroscopy combined with chemometrics to detect Sclerotinia stem rot on oilseed rape ( L.) leaves.
Plant Methods. 2017 May 17;13:39. doi: 10.1186/s13007-017-0190-6. eCollection 2017.
8
Fast Detection of on Oilseed Rape Leaves Using Low-Altitude Remote Sensing Technology.
Sensors (Basel). 2018 Dec 17;18(12):4464. doi: 10.3390/s18124464.
10
Detection of lead content in oilseed rape leaves and roots based on deep transfer learning and hyperspectral imaging technology.
Spectrochim Acta A Mol Biomol Spectrosc. 2023 Apr 5;290:122288. doi: 10.1016/j.saa.2022.122288. Epub 2022 Dec 31.

引用本文的文献

1
White Mold: A Global Threat to Crops and Key Strategies for Its Sustainable Management.
Microorganisms. 2024 Dec 24;13(1):4. doi: 10.3390/microorganisms13010004.
3
Early detection and lesion visualization of pear leaf anthracnose based on multi-source feature fusion of hyperspectral imaging.
Front Plant Sci. 2024 Oct 8;15:1461855. doi: 10.3389/fpls.2024.1461855. eCollection 2024.
4
Classification models for Tobacco Mosaic Virus and Potato Virus Y using hyperspectral and machine learning techniques.
Front Plant Sci. 2023 Oct 16;14:1211617. doi: 10.3389/fpls.2023.1211617. eCollection 2023.
5
End-to-End Fusion of Hyperspectral and Chlorophyll Fluorescence Imaging to Identify Rice Stresses.
Plant Phenomics. 2022 Aug 2;2022:9851096. doi: 10.34133/2022/9851096. eCollection 2022.
6
Past and Future of Plant Stress Detection: An Overview From Remote Sensing to Positron Emission Tomography.
Front Plant Sci. 2021 Jan 27;11:609155. doi: 10.3389/fpls.2020.609155. eCollection 2020.
7
Nondestructive monitoring of polyphenols and caffeine during green tea processing using Vis-NIR spectroscopy.
Food Sci Nutr. 2020 Sep 15;8(11):5860-5874. doi: 10.1002/fsn3.1861. eCollection 2020 Nov.
9
Aquaphotomics-From Innovative Knowledge to Integrative Platform in Science and Technology.
Molecules. 2019 Jul 28;24(15):2742. doi: 10.3390/molecules24152742.
10
Variety Identification of Raisins Using Near-Infrared Hyperspectral Imaging.
Molecules. 2018 Nov 8;23(11):2907. doi: 10.3390/molecules23112907.

本文引用的文献

1
2
Canopy Vegetation Indices from Hyperspectral Data to Assess Plant Water Status of Winter Wheat under Powdery Mildew Stress.
Front Plant Sci. 2017 Jul 13;8:1219. doi: 10.3389/fpls.2017.01219. eCollection 2017.
3
Mid-infrared spectroscopy combined with chemometrics to detect Sclerotinia stem rot on oilseed rape ( L.) leaves.
Plant Methods. 2017 May 17;13:39. doi: 10.1186/s13007-017-0190-6. eCollection 2017.
8
Meta-Analysis of the Detection of Plant Pigment Concentrations Using Hyperspectral Remotely Sensed Data.
PLoS One. 2015 Sep 10;10(9):e0137029. doi: 10.1371/journal.pone.0137029. eCollection 2015.
10
Fruit quality evaluation using spectroscopy technology: a review.
Sensors (Basel). 2015 May 21;15(5):11889-927. doi: 10.3390/s150511889.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验