Suppr超能文献

新型模型耦合方法用于沿海植物群落的恢复力分析。

Novel model coupling approach for resilience analysis of coastal plant communities.

机构信息

Landscape Ecology and Environmental Systems Analysis, Institute of Geoecology, Technische Universität Braunschweig, Langer Kamp 19c, D-38106, Braunschweig, Germany.

Institute of Earth and Environmental Science, University of Potsdam, Karl-Liebknecht-Strasse 24-25, D-14476, Potsdam-Golm, Germany.

出版信息

Ecol Appl. 2018 Sep;28(6):1640-1654. doi: 10.1002/eap.1758. Epub 2018 Jun 26.

Abstract

Resilience is a major research focus covering a wide range of topics from biodiversity conservation to ecosystem (service) management. Model simulations can assess the resilience of, for example, plant species, measured as the return time to conditions prior to a disturbance. This requires process-based models (PBM) that implement relevant processes such as regeneration and reproduction and thus successfully reproduce transient dynamics after disturbances. Such models are often complex and thus limited to either short-term or small-scale applications, whereas many research questions require species predictions across larger spatial and temporal scales. We suggest a framework to couple a PBM and a statistical species distribution model (SDM), which transfers the results of a resilience analysis by the PBM to SDM predictions. The resulting hybrid model combines the advantages of both approaches: the convenient applicability of SDMs and the relevant process detail of PBMs in abrupt environmental change situations. First, we simulate dynamic responses of species communities to a disturbance event with a PBM. We aggregate the response behavior in two resilience metrics: return time and amplitude of the response peak. These metrics are then used to complement long-term SDM projections with dynamic short-term responses to disturbance. To illustrate our framework, we investigate the effect of abrupt short-term groundwater level and salinity changes on coastal vegetation at the German Baltic Sea. We found two example species to be largely resilient, and, consequently, modifications of SDM predictions consisted mostly of smoothing out peaks in the occurrence probability that were not confirmed by the PBM. Discrepancies between SDM- and PBM-predicted species responses were caused by community dynamics simulated in the PBM and absent from the SDM. Although demonstrated with boosted regression trees (SDM) and an existing individual-based model, IBC-grass (PBM), our flexible framework can easily be applied to other PBM and SDM types, as well as other definitions of short-term disturbances or long-term trends of environmental change. Thus, our framework allows accounting for biological feedbacks in the response to short- and long-term environmental changes as a major advancement in predictive vegetation modeling.

摘要

弹性是一个重要的研究重点,涵盖了从生物多样性保护到生态系统(服务)管理等广泛的主题。模型模拟可以评估例如植物物种的弹性,其衡量标准是恢复到干扰前条件所需的时间。这需要基于过程的模型(PBM)来实现相关过程,如再生和繁殖,从而成功地在干扰后再现瞬态动态。此类模型通常很复杂,因此仅限于短期或小规模应用,而许多研究问题需要在更大的空间和时间尺度上预测物种。我们建议了一个框架,将基于过程的模型和统计物种分布模型(SDM)耦合起来,该框架将 PBM 的弹性分析结果转移到 SDM 预测中。由此产生的混合模型结合了两种方法的优势:SDM 的方便适用性和 PBM 在突发环境变化情况下的相关过程细节。首先,我们使用 PBM 模拟物种群落对干扰事件的动态响应。我们聚合了响应行为的两个弹性指标:恢复时间和响应峰值的幅度。然后,这些指标用于用对干扰的短期动态响应来补充长期 SDM 预测。为了说明我们的框架,我们研究了德国波罗的海沿海植被的突然短期地下水位和盐度变化对其的影响。我们发现两个例子物种具有很强的弹性,因此,SDM 预测的修改主要包括对出现概率峰值的平滑处理,而这些峰值在 PBM 中并未得到证实。SDM 和 PBM 预测的物种响应之间的差异是由 PBM 中模拟的群落动态引起的,而这些动态在 SDM 中并不存在。虽然我们使用了增强回归树(SDM)和现有的基于个体的模型 IBC-grass(PBM)进行了演示,但我们灵活的框架可以轻松应用于其他 PBM 和 SDM 类型,以及其他定义的短期干扰或长期环境变化趋势。因此,我们的框架允许在应对短期和长期环境变化时考虑生物反馈,这是预测植被建模的一个重大进展。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验