Suppr超能文献

评估 LMR、PLR、NLR 和 dNLR 在接受根治性膀胱切除术的尿路上皮膀胱癌患者中的预后价值。

Evaluation of the prognostic value of LMR, PLR, NLR, and dNLR in urothelial bladder cancer patients treated with radical cystectomy.

机构信息

Department of Urology, School of Medicine with the Division of Dentistry in Zabrze, Medical University  of Silesia in Katowice, Zabrze, Poland.

出版信息

Eur Rev Med Pharmacol Sci. 2018 May;22(10):3027-3037. doi: 10.26355/eurrev_201805_15060.

Abstract

OBJECTIVE

Our aim was to evaluate the association between preoperative LMR, PLR, NLR, dNLR, and survival of urothelial bladder cancer (UBC) patients treated with radical cystectomy (RC). We also analyzed the relationship between preoperative blood-based inflammatory biomarkers' levels and postoperative in-hospital complications.

PATIENTS AND METHODS

This retrospective study included 144 UBC patients, who underwent RC between 2003 and 2015. The study endpoints were cancer-specific survival (CSS) and overall survival (OS).

RESULTS

Univariable analysis revealed that continuous LMR, PLR, NLR and dNLR were significantly associated with CSS and OS. On multivariable regression model analysis, continuous LMR, NLR, and dNLR independently predicted both endpoints. Furthermore, the group of patients with lower LMR values had a greater chance of developing postoperative in-hospital complications.

CONCLUSIONS

Our findings indicate that the cheap and simple blood-based biomarkers may be valuable in identifying UBC patients treated with RC, who are at higher risk of all-cause and cancer-related mortality.

摘要

目的

我们旨在评估术前 LMR、PLR、NLR、dNLR 与接受根治性膀胱切除术(RC)治疗的膀胱癌(UBC)患者生存之间的关系。我们还分析了术前基于血液的炎症生物标志物水平与术后住院期间并发症之间的关系。

患者与方法

本回顾性研究纳入了 144 例于 2003 年至 2015 年间接受 RC 的 UBC 患者。研究终点为癌症特异性生存(CSS)和总生存(OS)。

结果

单变量分析显示,连续 LMR、PLR、NLR 和 dNLR 与 CSS 和 OS 显著相关。多变量回归模型分析显示,连续 LMR、NLR 和 dNLR 独立预测了这两个终点。此外,LMR 值较低的患者发生术后住院期间并发症的可能性更大。

结论

我们的研究结果表明,这些廉价且简单的基于血液的生物标志物可能有助于识别接受 RC 治疗的 UBC 患者,这些患者具有更高的全因和癌症相关死亡率风险。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验