Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials) , Fudan University , Shanghai 200433 , China.
College of Science , University of Shanghai for Science and Technology , Shanghai 200093 , China.
Langmuir. 2018 Jul 3;34(26):7663-7672. doi: 10.1021/acs.langmuir.8b01051. Epub 2018 Jun 19.
In this study, an interface coassembly strategy is employed to rationally synthesize a yolk-shell CuO/silicalite-1@void@mSiO composite consisting of silicalite-1 supported CuO nanoparticles confined in the hollow space of mesoporous silica, and the obtained composite materials were used as a novel nonenzymatic biosensor for highly sensitive and selective detecting glucose with excellent anti-interference ability. The synthesis of CuO/silicalite-1@mSiO includes four steps: coating silicalite-1 particles with resorcinol-formaldehyde polymer (RF), immobilization of copper species, interface deposition of a mesoporous silica layer, and final calcination in air to decompose RF and form CuO nanoparticles. The unique hierarchical porous structure with mesopores and micropores is beneficial to selectively enrich glucose for fast oxidation into gluconic acid. Besides, the mesopores in the silica shell can effectively inhibit the large interfering substances or biomacromolecules diffusing into the void as well as the loss of CuO nanoparticles. The hollow chamber inside serves as a nanoreactor for glucose oxidation catalyzed by the active CuO nanoparticles, which are spatially accessible for glucose molecules. The nonenzymatic glucose biosensors based on CuO/silicalite-1@mSiO materials show excellent electrocatalytic sensing performance with a wide linear range (5-500 μM), high sensitivity (5.5 μA·mM·cm), low detection limit (0.17 μM), and high selectivity against interfering species. Furthermore, the unique sensors even display a good capability in the determination of glucose in real blood serum samples.
在这项研究中,采用界面共组装策略合理合成了蛋黄壳型 CuO/silicalite-1@void@mSiO 复合材料,该复合材料由负载在介孔硅中空空间内的硅纳米颗粒上的 CuO 纳米颗粒组成,所得复合材料被用作新型非酶生物传感器,用于高灵敏度和选择性检测葡萄糖,具有出色的抗干扰能力。CuO/silicalite-1@mSiO 的合成包括四个步骤:用间苯二酚-甲醛聚合物(RF)涂覆硅纳米颗粒、固定铜物种、介孔硅层的界面沉积以及在空气中煅烧以分解 RF 并形成 CuO 纳米颗粒。具有介孔和微孔的独特分级多孔结构有利于选择性地富集葡萄糖,以快速氧化为葡萄糖酸。此外,二氧化硅壳中的介孔可以有效抑制大的干扰物质或生物大分子扩散到空隙中以及 CuO 纳米颗粒的损失。内部的空心室充当由活性 CuO 纳米颗粒催化的葡萄糖氧化的纳米反应器,葡萄糖分子可进入其中进行反应。基于 CuO/silicalite-1@mSiO 材料的非酶葡萄糖生物传感器具有出色的电催化传感性能,线性范围宽(5-500 μM)、灵敏度高(5.5 μA·mM·cm)、检测限低(0.17 μM),并且对干扰物质具有高选择性。此外,这些独特的传感器甚至在实际血清样品中葡萄糖的测定中表现出良好的性能。