1Genetica i Millora Animal,Institut de Recerca i Tecnologia Agroalimentàries (IRTA),Torre Marimon s/n,Caldes de Montbui,Barcelona, 08140,Spain.
Animal. 2019 Feb;13(2):231-239. doi: 10.1017/S1751731118001192. Epub 2018 Jun 6.
An alternative implementation of the animal model including indirect genetic effect (IGE) is presented considering pair-mate-specific interaction degrees to improve the performance of the model. Data consisted of average daily gain (ADG) records from 663 pigs kept in groups of 10 to 14 mates during the fattening period. Three types of models were used to fit ADG data: (i) animal model (AM); (ii) AM with classical IGE (AM-IGE); and (iii) AM fitting IGE with a specific degree of interaction between each pair of mates (AM-IGEi). Several feeding behavior phenotypes were used to define the pair-mate-specific degree of interaction in AM-IGEi: feeding rate (g/min), feeding frequency (min/day), the time between consecutive visits to the feeder (min/day), occupation time (min/day) and an index considering all these variables. All models included systematic effects batch, initial age (covariate), final age (covariate), number of pigs per pen (covariate), plus the random effect of the pen. Estimated posterior mean (posterior SD) of heritability was 0.47 (0.15) using AM. Including social genetic effects in the model, total heritable variance expressed as a proportion of total phenotypic variance (T 2) was 0.54 (0.29) using AM-IGE, whereas it ranged from 0.51 to 0.55 (0.12 to 0.14) with AM-IGEi, depending on the behavior trait used to define social interactions. These results confirm the contribution of IGEs to the total heritable variation of ADG. Moreover, important differences between models were observed in EBV rankings. The percentage of coincidence of top 10% animals between AM and AM-IGEi ranged from 0.44 to 0.89 and from 0.41to 0.68 between AM-IGE and AM-IGEi. Based on the goodness of fit and predictive ability, social models are preferred for the genetic evaluation of ADG. Among models including IGEs, when the pair-specific degree of interaction was defined using feeding behavior phenotypes we obtained an increase in the accuracy of genetic parameters estimates, the better goodness of fit and higher predictive ability. We conclude that feeding behavior variables can be used to measure the interaction between pen mates and to improve the performance of models including IGEs.
提出了一种考虑配对特定相互作用程度的动物模型的替代实现,以提高模型的性能。数据包括在育肥期间饲养的 663 头猪的平均日增重(ADG)记录,每组 10-14 头。使用三种类型的模型来拟合 ADG 数据:(i)动物模型(AM);(ii)带有经典互作遗传效应(AM-IGE)的 AM;(iii)拟合带有每对配对特定相互作用程度的互作遗传效应的 AM(AM-IGEi)。使用几种饲养行为表型来定义 AM-IGEi 中配对特定的相互作用程度:采食量(g/min)、采食频率(min/天)、连续访问饲槽之间的时间(min/天)、占时(min/天)和考虑所有这些变量的指数。所有模型都包括系统效应批次、初始年龄(协变量)、最终年龄(协变量)、每栏猪的数量(协变量),加上栏的随机效应。使用 AM 时,遗传力的估计后均值(后标准差)为 0.47(0.15)。在模型中包含社会遗传效应时,以表型方差的比例表示的总可遗传方差(T 2)使用 AM-IGE 为 0.54(0.29),而使用 AM-IGEi 时,范围为 0.51 至 0.55(0.12 至 0.14),具体取决于用于定义社会相互作用的行为特征。这些结果证实了互作遗传效应对 ADG 总可遗传变异的贡献。此外,在 EBV 排名方面观察到模型之间的重要差异。AM 和 AM-IGEi 之间前 10%动物的吻合率百分比范围为 0.44 至 0.89,AM-IGE 和 AM-IGEi 之间为 0.41 至 0.68。基于拟合优度和预测能力,社会模型更适合 ADG 的遗传评估。在包含互作遗传效应的模型中,当使用采食量行为表型定义特定于配对的相互作用程度时,我们获得了遗传参数估计准确性的提高、更好的拟合优度和更高的预测能力。我们得出结论,采食量行为变量可用于衡量栏内同伴之间的相互作用,并提高包含互作遗传效应的模型的性能。