Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia (K.E.S., C.M.-M., J.R.H.); and School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia (R.R.P., M.P.T.).
Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia (K.E.S., C.M.-M., J.R.H.); and School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia (R.R.P., M.P.T.)
Pharmacol Rev. 2018 Jul;70(3):446-474. doi: 10.1124/pr.117.015354.
Regulators of G protein signaling (RGS) proteins modulate the physiologic actions of many neurotransmitters, hormones, and other signaling molecules. Human RGS proteins comprise a family of 20 canonical proteins that bind directly to G protein-coupled receptors/G protein complexes to limit the lifetime of their signaling events, which regulate all aspects of cell and organ physiology. Genetic variations account for diverse human traits and individual predispositions to disease. RGS proteins contribute to many complex polygenic human traits and pathologies such as hypertension, atherosclerosis, schizophrenia, depression, addiction, cancers, and many others. Recent analysis indicates that most human diseases are due to extremely rare genetic variants. In this study, we summarize physiologic roles for RGS proteins and links to human diseases/traits and report rare variants found within each human RGS protein exome sequence derived from global population studies. Each RGS sequence is analyzed using recently described bioinformatics and proteomic tools for measures of missense tolerance ratio paired with combined annotation-dependent depletion scores, and protein post-translational modification (PTM) alignment cluster analysis. We highlight selected variants within the well-studied RGS domain that likely disrupt RGS protein functions and provide comprehensive variant and PTM data for each RGS protein for future study. We propose that rare variants in functionally sensitive regions of RGS proteins confer profound change-of-function phenotypes that may contribute, in newly appreciated ways, to complex human diseases and/or traits. This information provides investigators with a valuable database to explore variation in RGS protein function, and for targeting RGS proteins as future therapeutic targets.
G 蛋白信号转导调节因子(RGS)蛋白调节许多神经递质、激素和其他信号分子的生理作用。人类 RGS 蛋白家族由 20 种经典蛋白组成,它们直接与 G 蛋白偶联受体/G 蛋白复合物结合,限制其信号事件的寿命,从而调节细胞和器官生理的各个方面。遗传变异导致了人类的各种特征和对疾病的个体易感性。RGS 蛋白参与了许多复杂的多基因人类特征和病理,如高血压、动脉粥样硬化、精神分裂症、抑郁症、成瘾、癌症等。最近的分析表明,大多数人类疾病是由于极其罕见的遗传变异引起的。在这项研究中,我们总结了 RGS 蛋白的生理作用及其与人类疾病/特征的联系,并报告了从全球人群研究中得出的每个人类 RGS 蛋白外显子序列中发现的罕见变异。我们使用最近描述的生物信息学和蛋白质组学工具分析每个 RGS 序列,用于测量错义容忍比与联合注释依赖性耗竭评分配对,并进行蛋白质翻译后修饰(PTM)对齐聚类分析。我们强调了在研究充分的 RGS 结构域内的选定变异,这些变异可能破坏 RGS 蛋白的功能,并为每个 RGS 蛋白提供综合的变异和 PTM 数据,以供未来研究。我们提出,RGS 蛋白功能敏感区域的罕见变异赋予了深刻的功能改变表型,这些表型可能以新的方式为复杂的人类疾病和/或特征做出贡献。这些信息为研究人员提供了一个有价值的数据库,用于探索 RGS 蛋白功能的变异,并将 RGS 蛋白作为未来的治疗靶点。